首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
化学   5篇
数学   1篇
物理学   2篇
  2019年   1篇
  2014年   2篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2006年   1篇
排序方式: 共有8条查询结果,搜索用时 140 毫秒
1
1.
Novel bioengineering functional copolymer‐g‐biopolymer‐based layered silicate nanocomposites were fabricated by catalytic interlamellar bulk graft copolymerization of L‐lactic acid (LA) monomer onto alternating copolymer of maleic anhydride (MA) with 1‐octadecene as a reactive matrix polymer in the presence of preintercalated LA…organo‐MMT clay (reactive ODA‐MMT and non‐reactive DMDA‐MMT) complexes as nanofillers and tin(oct)2 as a catalyst under vacuum at 80°C. To characterize the functional copolymer layered silicate nanocomposites and understand the mechanism of in situ processing, interfacial interactions and nanostructure formation in these nanosystems, we have utilized a combination of variuous methods such as FT‐IR spectroscopy, X‐ray diffraction (XRD), dynamic mechanical (DMA), thermal (DSC and TGA‐DTG), SEM and TEM morphology. It was found that in situ graft copolymerization occurred through the following steps: (i) esterification of anhydride units of copolymer with LA; (ii) intercalation of LA between silicate galleries; (iii) intercalation of matrix copolymer into silicate layers through in situ amidization of anhydride units with octadecyl amine intercalant; and (iv) interlamellar graft copolymerization via in situ intercalating/exfoliating processing. The main properties and observed micro‐ and nanoporous surface and internal core–shell morphology of the nanocomposites significantly depend on the origin of MMT clays and type of in situ processing (ion exchanging, amidization reaction, strong H‐bonding and self‐organized hydrophobic/hydrophilic interfacial interactions). This developed approach can be applied to a wide range of anhydride‐containing copolymers such as random, alternating and graft copolymers of MA to synthesize new generation of polymer‐g‐biopolymer silicate layered nanocomposites and nanofibers for nanoengineering and nanomedicine applications. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
2.
Numerical solutions of flow equation in fluid content-based form or in fluid pressure head-based form are often tradeoffs between speed, accuracy, and convenience. The fluid-content based form can be solved quite rapidly with low CPU time and perfect mass balance. However, it cannot be used in saturated regions (as diffusivity function becomes infinite) and strictly becomes invalid in composite, layered, and real heterogeneous porous materials, due to singularity and discontinuity in fluid content profile. This formulation also gives misleading impression that gradient in fluid content causes the flow of fluid in porous materials, where in reality gravity and fluid pressure potential gradient produce the motion. The pressure head-based form, on the other hand, is more flexible but due to its highly nonlinear nature is much more time-consuming and produces poor global mass balance for dry initial conditions. Very fine spatial and temporal discretizations are needed to maintain mass balance property for these scenarios. The mixed form of the flow equation partially solves these issues as it maintains acceptable mass balance and is applicable to layered, heterogeneous, and composite fractured foundations. However, it is only applicable in unsaturated zones. In this study, a switching algorithm was proposed and implemented in which the mass conservative mixed form and the pressure head-based form were, respectively, used in the unsaturated and saturated zones of an initial-boundary value flow problem involving a variably saturated porous medium. The algorithm showed excellent agreement with a reference solution, obtained on a very fine spatiotemporal mesh. The simulator was then calibrated with several real-world large-scale experimental datasets. In all cases, the proposed algorithm exhibited close agreements with the experimental time–space series. The algorithm poses excellent mass balance property and can easily be used in both saturated and unsaturated regions without special treatment of fluid content discontinuities in heterogeneous and layered porous media. The proposed algorithm can also be extended to simulate multiphase and multidimensional flow problems.  相似文献   
3.
The carbon dioxide reforming of methane to synthesis gas under DC-pulsed plasma was investigated. The effects of specific input energy and feed ratio on the product distribution and also feed conversion was studied. At the input energy of about 11 eV/molecule per methane and/or carbon dioxide the feed conversion of 38% for CH4 and 28% for CO2 and product selectivity of 74% has been attained for H2 and CO at feed flow rate of 90 ml/min. The energy consumption in this work displays potential to further study and optimization of the process. The importance of the electron impact reactions in the process was discussed. The results show that by prudent tuning of system variables, the process be able to run in the way of synthesis gas, instead of hydrocarbon production.  相似文献   
4.
The Weibull distribution is widely used in applications such as reliability and lifetime studies. Although this distribution has three parameters, for simplicity, literature pertaining to Weibull parameter estimation relaxes one of its parameters in order to estimate the other two. When the three-parameter Weibull distribution is of interest, the estimation procedure is complicated. For example, the likelihood function for a three-parameter Weibull distribution is hard to maximize. In this paper, a Cross Entropy (CE) method is developed in the context of maximum likelihood estimation (MLE) of a three-parameter Weibull distribution. Performing a simulation study, a comparative analysis between the newly developed method and two existing methods is conducted. The results show the proposed method has better performance in terms of accuracy, precision and run time for different parameter settings and sample sizes.  相似文献   
5.
In this study, poly(vinylphosphonic acid‐co‐ethylene dimethacrylate), poly(VPA‐co‐EDMA) capillary monolith was synthesized as a starting material for obtaining a stationary phase for microscale enrichment of phosphopeptides. The chelation of active phosphonate groups with Ti (IV) ions gave a macroporous monolithic column with a mean pore size of 5.4 μm. The phosphopeptides from different sources were enriched on Ti (IV)‐attached poly(VPA‐co‐EDMA) monolith using a syringe‐pump. The monolithic capillary columns exhibited highly sensitive/selective enrichment performance with phosphoprotein concentrations as low as 1.0 fmol/mL. Six different phosphopeptides were detected with high intensity by the treatment of β‐casein digest with the concentration of 1.0 fmol/mL, using Ti (IV)@poly(VPA‐co‐EDMA) monolith. Highly selective enrichment of phosphopeptides was also successfully carried out even at trace amounts, in a complex mixture of digested proteins (molar ratio of β‐casein to bovine serum albumin, 1:1500) and three phosphopeptides were successfully detected. Four highly intense signals of phosphopeptides in human serum were also observed with high signal‐to‐noise ratio and a clear background after enrichment with Ti (IV)@poly(VPA‐co‐EDMA) monolith. It was concluded that the capillary microextraction system enabled fast, efficient and robust enrichment of phosphopeptides from microscale complex samples. The whole enrichment process was completed within 20 min, which was shorter than in the previously reported studies.  相似文献   
6.
We have performed calculations for collisions between fully stripped ions, C6+ and N7+, and atomic hydrogen, in both its ground and first excited energy levels. We have employed the Classical Trajectory Monte Carlo method to obtain total ionization and charge exchange cross sections and state selective charge exchange cross sections in the 5–500 keV/amu energy range.  相似文献   
7.
Solubility data of CO2 in aqueous N-methyldiethanolamine (MDEA) solutions of concentration (2.52, 3.36, and 4.28) kmol/m3 were obtained at temperatures (313, 323, and 343) K and partial pressures ranging from about (30 to 5000) kPa. A thermodynamic model based on extended Debye–Hückel theory was applied to predict and correlate of CO2 solubility in various aqueous amine solutions. The effect of piperazine (PZ) concentration on CO2 loading in MDEA solutions was determined at PZ concentration (0.36, 0.86, and 1.36) kmol/m3. Using experimental data in various temperatures the interaction parameters of activity coefficient model for these systems were determined. The results show the model consistency with experimental and literature data and PZ is beneficial to the CO2 loading. The comparison of results of this study with previous data work shows the wide range of CO2 loading considered in this work and the better agreement of model with experimental data. The average absolute relative deviation percent (δAAD) for all data points were 8.11%.  相似文献   
8.
The new data for solubility of carbon dioxide are reported in mixed solvents containing (2.00 to 2.50 kmol/m3) Diisopropanolamine (DIPA), (0.86 to 1.36) kmol/m3) Piperazine (PZ), (0.86 to 1.36) kmol/m3) N‐methyldiethanolamine (MDEA) and water, keeping the amine total concentration in the aqueous solution at 3.36 kmol/m3 for temperatures from (40 to 70) °C and CO2 partial pressures in the range of (30 to 5000) kPa. Experimental solubility results were represented by the mole ratio of CO2 per total amine in the liquid mixture. Results show that at a given partial pressure of CO2 the solubility of CO2 in the DIPA solutions is lower than solubility in MDEA or PZ solutions and the CO2 loading increased with decreasing temperature and increasing CO2 partial pressure.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号