首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   241篇
  免费   16篇
  国内免费   3篇
化学   170篇
力学   4篇
数学   52篇
物理学   34篇
  2022年   1篇
  2021年   3篇
  2020年   4篇
  2019年   4篇
  2018年   1篇
  2017年   4篇
  2016年   10篇
  2015年   11篇
  2014年   10篇
  2013年   18篇
  2012年   19篇
  2011年   15篇
  2010年   8篇
  2009年   6篇
  2008年   15篇
  2007年   17篇
  2006年   8篇
  2005年   20篇
  2004年   8篇
  2003年   10篇
  2002年   15篇
  2001年   8篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   4篇
  1995年   4篇
  1992年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1984年   2篇
  1982年   1篇
  1979年   3篇
  1978年   3篇
  1976年   1篇
  1975年   3篇
  1974年   1篇
  1969年   2篇
  1968年   2篇
  1966年   1篇
  1933年   2篇
排序方式: 共有260条查询结果,搜索用时 15 毫秒
1.
On effectiveness of wiretap programs in mapping social networks   总被引:1,自引:0,他引:1  
Snowball sampling methods are known to be a biased toward highly connected actors and consequently produce core-periphery networks when these may not necessarily be present. This leads to a biased perception of the underlying network which can have negative policy consequences, as in the identification of terrorist networks. When snowball sampling is used, the potential overload of the information collection system is a distinct problem due to the exponential growth of the number of suspects to be monitored. In this paper, we focus on evaluating the effectiveness of a wiretapping program in terms of its ability to map the rapidly evolving networks within a covert organization. By running a series of simulation-based experiments, we are able to evaluate a broad spectrum of information gathering regimes based on a consistent set of criteria. We conclude by proposing a set of information gathering programs that achieve higher effectiveness then snowball sampling, and at a lower cost. Maksim Tsvetovat is an Assistant Professor at the Center for Social Complexity and department of Public and International Affairs at George Mason University, Fairfax, VA. He received his Ph.D. from the Computation, Organizations and Society program in the School of Computer Science, Carnegie Mellon University. His dissertation was centered on use of artificial intelligence techniques such as planning and semantic reasoning as a means of studying behavior and evolution of complex social networks, such as these of terrorist organizations. He received a Master of Science degree from University of Minnesota with a specialization in Artificial Intelligence and design of Multi-Agent Systems, and has also extensively studied organization theory and social science research methods. His research is centered on building high-fidelity simulations of social and organizational systems using concepts from distributed artificial intelligence and multi-agent systems. Other projects focus on social network analysis for mapping of internal corporate networks or study of covert and terrorist orgnaizations. Maksim’s vita and publications can be found on Kathleen M. Carley is a professor in the School of Computer Science at Carnegie Mellon University and the director of the center for Compuational Analysis of Social and Organizational Systems (CASOS) which has over 25 members, both students and research staff. Her research combines cognitive science, social networks and computer science to address complex social and organizational problems. Her specific research areas are dynamic network analysis, computational social and organization theory, adaptation and evolution, text mining, and the impact of telecommunication technologies and policy on communication, information diffusion, disease contagion and response within and among groups particularly in disaster or crisis situations. She and her lab have developed infrastructure tools for analyzing large scale dynamic networks and various multi-agent simulation systems. The infrastructure tools include ORA, a statistical toolkit for analyzing and visualizing multi-dimensional networks. ORA results are organized into reports that meet various needs such as the management report, the mental model report, and the intelligence report. Another tool is AutoMap, a text-mining systems for extracting semantic networks from texts and then cross-classifying them using an organizational ontology into the underlying social, knowledge, resource and task networks. Her simulation models meld multi-agent technology with network dynamics and empirical data. Three of the large-scale multi-agent network models she and the CASOS group have developed in the counter-terrorism area are: BioWar a city-scale dynamic-network agent-based model for understanding the spread of disease and illness due to natural epidemics, chemical spills, and weaponized biological attacks; DyNet a model of the change in covert networks, naturally and in response to attacks, under varying levels of information uncertainty; and RTE a model for examining state failure and the escalation of conflict at the city, state, nation, and international as changes occur within and among red, blue, and green forces. She is the founding co-editor with Al. Wallace of the journal Computational Organization Theory and has co-edited several books and written over 100 articles in the computational organizations and dynamic network area. Her publications can be found at: http://www.casos.cs.cmu.edu/bios/carley/publications.php  相似文献   
2.
An N,N′-diphenyl urea was designed as a model system for aggregation phenomenon in poly(phenyleneethynylenes) (PPEs). The unmethylated N,N′-diphenyl urea adopts an open, unfolded conformation in which the two diphenyl acetylene fluorophores are far enough away, mimicking the unaggregated state. Dimethylation forces the aromatic surfaces together into π-π contact, mimicking the aggregated state of PPEs. Analogous to bulk PPEs, this model system shows dramatic differences in quantum yield between the folded and unfolded states, with the unfolded urea having greater than 400-fold higher fluorescence quantum yield than its folded equivalent.  相似文献   
3.
The reaction between thiocarbamate herbicides and 2,6-dichlorobenzoquinone-N-chloroimine or 2,6-dibromobenzoquinone-N-chloroimine is suitable for the detection of these herbicides on thin-layer plates with high sensitivity. The reactions were followed by infrared, nuclear magnetic resonance and mass spectrometry. We have established the formation of 2,6-dichlorobenzoquinone-S-alkyl sulphenylimines. In the case of the bromo-derivative, halogen exchange and substitution on the quinone ring took place simultaneously leading to the formation of mixed halogenated 2,6-dihalo- and, in addition, 2,3,6-trihalobenzoquinone-S-alkyl sulphenylimines. The final product of the detection reaction, i.e. 2,6-dichlorobenzoquinone-S-alkyl sulphenylimine was reacted with 2,6-dibromobenzoquinone-N-chloroimine where 2,6-dichloro-3-bromobenzoquinone-S-alkyl sulphenylimine formed as a consequence of the looser bromine-carbon linkage on the 2 and 6 positions of the quinone ring.  相似文献   
4.
The oxidative decomposition of various ketones (including acetone, 2-butanone, 4-heptanone, cyclopentanone and cyclohexanone) over dehydrated TiO(2) (P25) powder is investigated by electron paramagnetic resonance (EPR) spectroscopy. For the first time, a series of thermally unstable radical intermediates are observed both on the activated and reduced TiO(2) surface, depending on the adopted experimental conditions. These radical intermediates are identified as organoperoxy-based species of general formula ROO(.-) and RCO(3) (.-). They are formed by reaction of photogenerated charge carriers (either trapped electrons or trapped holes) with the adsorbed ketones in the presence of molecular oxygen. The organoperoxy intermediates are thermally unstable and decompose at temperatures in the region of 180-250 K. This work demonstrates that free-radical pathways involving both organoperoxy and superoxide radicals can be responsible for the thermal- and photodecomposition of ketones over polycrystalline TiO(2) (P25).  相似文献   
5.
[FeFe]-hydrogenases are known for their high rates of hydrogen turnover, and are intensively studied in the context of biotechnological applications. Evolution has generated a plethora of different subclasses with widely different characteristics. The M2e subclass is phylogenetically distinct from previously characterized members of this enzyme family and its biological role is unknown. It features significant differences in domain- and active site architecture, and is most closely related to the putative sensory [FeFe]-hydrogenases. Here we report the first comprehensive biochemical and spectroscopical characterization of an M2e enzyme, derived from Thermoanaerobacter mathranii. As compared to other [FeFe]-hydrogenases characterized to-date, this enzyme displays an increased H2 affinity, higher activation enthalpies for H+/H2 interconversion, and unusual reactivity towards known hydrogenase inhibitors. These properties are related to differences in active site architecture between the M2e [FeFe]-hydrogenase and “prototypical” [FeFe]-hydrogenases. Thus, this study provides new insight into the role of this subclass in hydrogen metabolism and the influence of the active site pocket on the chemistry of the H-cluster.

Characterization of a group D putative sensory [FeFe]-hydrogenase reveals how the active site can be tuned to decrease CO inhibition and increase stability of a reduced H-cluster while retaining the ability to catalyze H+/H2 interconversion.  相似文献   
6.
Interaction of oxygen with evaporated nickel films has been studied by X-ray photoelectron spectroscopy, XPS, over the temperature range 77–500 K and pressure range 10?9?10?4 torr. Three oxygen species have been positively identified from O(1s) binding energy shifts (I, II and III with BE's 529.5, 531.4 and 533.2 eV). A fourth state at ca. 534.8 eV may also exist. The relative proportions of each species present depends on the temperature of the substrate. Type I is tentatively considered to represent oxygen atoms in an oxide-like electronic environment, type II is assigned as chemisorbed oxygen atoms, although the possibility of assignment at high oxygen coverages to a defect Ni2 O3 structure is admitted. Type III is only formed in sub-monolayer quantities on interaction at 77 K; converting irreversibly to II on warming to 300 K. I and II are always formed together between 300 and 500 K. The authors believe this implies some incorporation of oxygen atoms from the start of adsorption, which in turn has important implications for recent LEED studies.  相似文献   
7.
Peptide-based nanofibres are a versatile class of tunable materials with applications in optoelectronics, sensing and tissue engineering. However, the understanding of the nanofibre surface at the molecular level is limited. Here, a series of homologous dilysine–diphenylalnine tetrapeptides were synthesised and shown to self-assemble into water-soluble nanofibres. Despite the peptide nanofibres displaying similar morphologies, as evaluated through atomic force microscopy and neutron scattering, significant differences were observed in their ability to support sensitive primary neurons. Contact angle and labelling experiments revealed that differential presentation of lysine moieties at the fibre surface did not affect neuronal viability; however the mobility of phenylalanine residues at the nanofibre surface, elucidated through solid- and gel-state NMR studies and confirmed through tethered bilayer lipid membrane experiments, was found to be the determining factor in governing the suitability of a given peptide as a scaffold for primary neurons. This work offers new insights into characterising and controlling the nanofibre surface at the molecular level.

The mobility of hydrophobic moieties at a peptide nanofibre surface determines its suitability as a scaffold for sensitive primary cells.  相似文献   
8.
In vivo microdialysis sampling was coupled to capillary liquid chromatography (LC)/electrospray ionization quadrupole ion trap mass spectrometry (MS) to monitor [Met]enkephalin and [Leu]enkephalin in the striatum of anesthetized and freely-moving rats. The LC system utilized a high-pressure pump to load 2.5 microl samples and desalt the 25 microm i.d. by 2 cm long column in 12 min. Samples were eluted with a separate pump at approximately 100 nl min(-1). A rapid gradient effectively separated the endogenous neuropeptides in 4 min. A comparison was made for operating the mass spectrometer in the MS2 and MS3 modes for detection of the peptides. In standard solutions, the detection limits were similar at 1-2 pM (2-4 amol injected); however, the reproducibility was improved with MS3 as the relative standard deviation was <5% compared with 20% for MS2 for 60 pM samples. For dialysate solutions, reconstructed ion chromatograms and tandem mass spectra had much higher signal-to-noise ratios in the MS3 mode, resulting in more confident detection at in vivo concentrations. The method was successfully used to monitor the peptides under basal conditions and with stimulation of peptide secretion by infusion of elevated K+ concentration.  相似文献   
9.
The benefits of gradient techniques in the study of lipid membranes are demonstrated on a sample of 1-palmitoyl-2-oleoyl-sn-glycero-3 phosphocholine (POPC) liposomes embedded with ibuprofen. Most techniques from gradient NMR spectroscopy on solution samples are directly applicable to membrane samples subjected to magic angle spinning (MAS). Gradient-enhanced homo- and heteronuclear chemical shift correlation techniques were used to make resonance assignments. Gradient NOESY experiments provide insight into the location and dynamics of lipids, ibuprofen and water. Application of gradients not only reduces experiment time but also the t(1) noise in the multi-dimensional spectra. Diffusion measurements with pulsed field gradients characterize lateral movements of lipid and drug molecules in membranes. The theoretical framework for data analysis of MAS diffusion experiments on randomly oriented multilamellar liposomes is presented.  相似文献   
10.
We present a new methodology for computing solvation free energy, which is based upon the reference interaction site model (RISM)/hypernetted chain (HNC) solvation free energy expression, but which substitutes radial distribution functions taken from simulations for those calculated by simultaneous solution of the RISM and HNC equations. Consequently, solvation free energy can be obtained from a single molecular dynamics or Monte Carlo simulation. Here we describe in detail the coupled RISM/simulation approach, and offer some error analysis. Finally we give the results of its application to a set of small test molecules in aqueous solution. The success shown in some of our results demonstrates that the coupled RISM/simulation approach is worth considering further as a potentially useful tool in studies of solvated systems, such as aqueous molecular biosystems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号