首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
化学   5篇
力学   11篇
数学   2篇
  2017年   1篇
  2012年   2篇
  2011年   3篇
  2010年   4篇
  2004年   1篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1993年   1篇
排序方式: 共有18条查询结果,搜索用时 31 毫秒
1.
The quenching of bacteriochlorophyll (BChl) c fluorescence in chlorosomes isolated from Chloroflexus aurantiacus was examined by the addition of various benzoquinones, naphthoquinones (NQ), and anthraquinones (AQ). Many quinones showed strong quenching in the micromolar or submicromolar range. The number of quinone molecules bound to the chlorosomes was estimated to be as small as one quinone molecule per 50 BChl c molecules. Quinones which exhibit a high quenching effect have sufficient hydrophobicity and one or more hydroxyl groups in the alpha positions of NQ and AQ. Chlorobiumquinone has been suggested to be essential for the endogenous quenching of chlorosome fluorescence in Chlorobium tepidum under oxic conditions. We suggest that the quenching effect of chlorobiumquinone in chlorosomes from Chl. tepidum is related to the 1'-oxo group neighboring the dicarbonyl group.  相似文献   
2.
In well construction, there are an increasing number of scenarios in which plugs are being set in annular geometries, whether as cement plugs or simply in the form of chemical packers. The generic reason for setting of such plugs is to hydraulically isolate different regions of a wellbore (or hole). An interesting practical problem in such situations is to predict the rheological properties that are necessary to prevent the annular plug fluid from flowing under the action of buoyancy, or indeed to predict how far the plug material may flow for given rheological properties. The answers to these questions provide valuable information for operational design. Mathematically, these flows are modeled using a Hele-Shaw style approximation of the narrow annulus. Since fluids used in the wellbore are non-Newtonian, typically shear-thinning and with a yield stress, the relationship between the local modified pressure gradient and the gap-averaged velocity field is nonlinear. If the yield stress of the fluids is sufficiently large, relative to the applied pressure over the gap, there is no flow. In the porous media context, there is direct analogy with problems of nonlinear seepage and in particular with non-Darcy flows with limiting pressure gradient. The study of such flows was both pioneered and developed by V.M. Entov, to whose memory this paper is dedicated.  相似文献   
3.
We consider the stability of a multi-layer plane Poiseuille flow of two Bingham fluids. It is shown that this two-fluid flow is frequently more stable than the equivalent flow of either fluid alone. This phenomenon of super-stability results only when the yield stress of the fluid next to the channel wall is larger than that of the fluid in the centre of the channel, which need not have a yield stress. Our result is in direct contrast to the stability of analogous flows of purely viscous generalised Newtonian fluids, for which short wavelength interfacial instabilities can be found at relatively low Reynolds numbers. The results imply the existence of parameter regimes where visco-plastic lubrication is possible, permitting transport of an inelastic generalised Newtonian fluid in the centre of a channel, lubricated at the walls by a visco-plastic fluid, travelling in a stable laminar flow at higher flow rates than would be possible for the single fluid alone.  相似文献   
4.
Multi-fluid flows are frequently thought of as being less stable than single phase flows. Consideration of different non-Newtonian models can give rise to different types of hydrodynamic instability. Here we show that with careful choice of fluid rheologies and flow paradigm, one can achieve multi-layer flows that are linearly stable for Re = ∞. The basic methodology consists of two steps. First we eliminate interfacial instabilities by using a yield stress fluid in one fluid layer and ensuring that for the base flow configurations studied we maintain an unyielded plug region at the interface. Secondly we eliminate linear shear instabilities by ensuring a strong enough Couette component in the second fluid layer, imposed via the moving interface. We show that this technique can be applied to both shear-thinning and visco-elastic fluids.  相似文献   
5.
We consider a two-dimensional Hele–Shaw type model fordisplacement flows occurring in the primary cementing of anoil well. The fluids are visco-plastic and may get stuck inthe annulus if a critical pressure gradient is not exceeded.The model consists of solving a nonlinear elliptic variationalinequality equation for the stream function, coupled to an equationfor interface advection, or alternatively a concentration equationfor the mass fraction of each fluid. The key difficulty is toaccurately compute yielded and unyielded zones of the wellborefluids, which we accomplish by use of an augmented Lagrangianmethod to solve the stream function equation. We validate theaccuracy of our method against analytical solutions for stablesteady-state displacements. We study the convergence of theinterface to the steady state, showing that the apparent meta-stabilityis illusory. We then explore the effects of increasing eccentricity,showing that although the interface may remain stable it becomesunsteady. Initially fully mobile flows are found, but as theeccentricity increases further the narrow side fluids fail tomove in the far field. The narrow side interface can progressslowly through the static fluids by a burrowing motion, butfor still larger eccentricities even the interface becomes staticand a narrow-side mud channel forms.  相似文献   
6.
A clever combination: an in situ solid-state NMR analysis of CsmA proteins in the heterogeneous environment of the photoreceptor of Chlorobaculum tepidum is reported. Using different combinations of 2D and 3D solid-state NMR spectra, 90?% of the CsmA resonances are assigned and provide on the basis of chemical shift data information about the structure and conformation of CsmA in the CsmA-bacteriochlorophyll a complex.  相似文献   
7.
8.
Electronic energy transfer processes in chlorosomes isolated from the green sulphur bacterium Chlorobium tepidum and from the green filamentous bacterium Chloroflexus aurantiacus have been investigated. Steady-state fluorescence excitation spectra and time-resolved triplet-minus-singlet (TmS) spectra, recorded at ambient temperature and under non-reducing or reducing conditions, are reported. The carotenoid (Car) pigments in both species transfer their singlet excitation to bacteriochlorophyll c (BChlc) with an efficiency which is high (between 0.5 and 0.8) but smaller than unity; BChlc and bacteriochlorophyll a (BChla) transfer their triplet excitation to the Car's with nearly 100% efficiency. The lifetime of the Car triplet states is approximately 3 micros, appreciably shorter than that of the Car triplets in the light-harvesting complex II (LHCII) in green plants and in other antenna systems. In both types of chlorosomes the yield of BChlc triplets (as judged from the yield of the Car triplets) remains insensitive to the redox conditions. In notable contrast the yield of BChlc singlet emission falls, upon a change from reducing to non-reducing conditions, by factors of 4 and 35 in Cfx. aurantiacus and Cb. tepidum, respectively. It is possible to account for these observations if one postulates that the bulk of the BChlc triplets originate either from a large BChlc pool which is essentially non-fluorescent and non-responsive to changes in the redox conditions, or as a result of a process which quenches BChlc singlet excitation and becomes more efficient under non-reducing conditions. In chlorosomes from Cfx. aurantiacus whose Car content is lowered, by hexane extraction, to 10% of the original value, nearly one-third of the photogenerated BChlc triplets still end up on the residual Car pigments, which is taken as evidence of BChlc-to-BChlc migration of triplet excitation; the BChlc triplets which escape rapid static quenching contribute a depletion signal at the long-wavelength edge of the Qy absorption band, indicating the existence of at least two pools of BChlc.  相似文献   
9.
We present an experimental investigation of an instability triggered by a fast chemical reaction in a low inertia parallel flow in a small channel. Two fluids evenly injected in a straight channel react creating a strongly stratified distribution of viscosity near their interface, which destabilizes the flow. Depending on the flow rates and the aspect ratio of the flow channel, several unstable regimes are observed: mixing regime, weakly stratified regime and a stable stratified regime. In channels of 1:1 aspect ratio we find most efficient mixing (and highest flow resistance) at an intermediate pressure drops, as the flow transitions between a fully 3D regime and more stratified regime. For channels of small aspect ratio the non-monotonicity is less evident: higher pressure drops lead to increased mixing.  相似文献   
10.
Yield stress fluid flows occur in a great many operations and unit processes within the oil and gas industry. This paper reviews this usage within reservoir flows of heavy oil, drilling fluids and operations, wellbore cementing, hydraulic fracturing and some open-hole completions, sealing/remedial operations, e.g., squeeze cementing, lost circulation, and waxy crude oils and flow assurance, both wax deposition and restart issues. We outline both rheological aspects and relevant fluid mechanics issues, focusing primarily on yield stress fluids and related phenomena.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号