首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
力学   1篇
数学   2篇
物理学   2篇
  2008年   1篇
  2003年   1篇
  2000年   1篇
  1999年   1篇
  1987年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
2.
An eigenexpansion solution of the time-independent Brownian motion Fokker-Planck equation is given for a situation in which the external acceleration is a step function. The solution describes the heavy-species velocity distribution function in a binary mixture undergoing a shock wave, in the limit of high dilution of the heavy species and negligible width of the light-gas internal shock. The diffusion solution is part of the eigenexpansion. The coefficients of the series of eigenfunctions are obtained analytically with transcendentally small errors of order exp(–1/M), whereM 1 is the mass ratio. Comparison is made with results from a hypersonic approximation.  相似文献   
3.
4.
The linear stability of the developing flow in an axially rotating pipe is analyzed using parabolized stability equations (PSE). The results are compared with those obtained from a near-parallel stability approximation that only takes into account the axial variation of the basic flow. Though the PSE results obviously coincide with the near-parallel ones far downstream, when the flow has reached a Hagen-Poiseuille axial velocity profile with superimposed solid-body rotation, they differ significantly in the developing region. Therefore, the onset of instability strongly depends on the axial evolution of the perturbations. The PSE results are also compared with experimental data from Imao et al. [Exp. Fluids 12 (1992) 277], showing a good agreement in the frequencies and wavelengths of the unstable disturbances, that take the form of spiral waves. Finally, a simple method for detecting one of the conditions to characterize the onset of absolute instability using PSE is given.  相似文献   
5.
We develop in this paper a numerical method to simulate three-dimensional incompressible flows based on a decomposition of the flow into an axisymmetric part, in terms of the stream function and the circulation, and a non-axisymmetric part in terms of a potential vector function. The method is specially suited for the study of nonlinear stability of axially symmetric flows because one may follow neatly the raising of the different non-axisymmetric modes, their nonlinear development, and their nonlinear interaction. The numerical technique combines finite differences on a non-uniform grid in the axial direction, a Chebyshev spectral collocation technique in the radial direction, and a Fourier spectral method in the azimuthal direction for the non-axisymmetric vector potential. As an example to check the efficiency and accuracy of the method we apply it to the flow inside a rotating circular pipe, and compare the resulting travelling waves with previous stability results for this problem, for different values of the Reynolds and the swirl numbers.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号