首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
数学   8篇
物理学   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2007年   1篇
  2000年   1篇
  1999年   3篇
排序方式: 共有9条查询结果,搜索用时 140 毫秒
1
1.
We use the first-order shear deformation theory and a meshless method based on radial basis functions in a pseudospectral framework for predicting the free vibration behavior of thick orthotropic, monoclinic and hexagonal plates. The shape parameter is obtained by an optimization procedure. The three translational and two rotational degrees of freedom of a point of the laminate are independently approximated. Through numerical experiments, the capability and efficiency of the radial basis functions—pseudospectral method for eigenvalue problems are demonstrated, and the numerical accuracy and convergence are examined.  相似文献   
2.
We show how conditionally negative definite functions on spheres coupled with strictly completely monotone functions (or functions whose derivative is strictly completely monotone) can be used for Hermite interpolation. The classes of functions thus obtained have the advantage over the strictly positive definite functions studied in [17] that closed form representations (as opposed to series expansions) are readily available. Furthermore, our functions include the historically significant spherical multiquadrics. Numerical results are also presented. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
3.
We show how certain widely used multistep approximation algorithms can be interpreted as instances of an approximate Newton method. It was shown in an earlier paper by the second author that the convergence rates of approximate Newton methods (in the context of the numerical solution of PDEs) suffer from a “loss of derivatives”, and that the subsequent linear rate of convergence can be improved to be superlinear using an adaptation of Nash–Moser iteration for numerical analysis purposes; the essence of the adaptation being a splitting of the inversion and the smoothing into two separate steps. We show how these ideas apply to scattered data approximation as well as the numerical solution of partial differential equations. We investigate the use of several radial kernels for the smoothing operation. In our numerical examples we use radial basis functions also in the inversion step. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
4.
On choosing “optimal” shape parameters for RBF approximation   总被引:1,自引:0,他引:1  
Many radial basis function (RBF) methods contain a free shape parameter that plays an important role for the accuracy of the method. In most papers the authors end up choosing this shape parameter by trial and error or some other ad hoc means. The method of cross validation has long been used in the statistics literature, and the special case of leave-one-out cross validation forms the basis of the algorithm for choosing an optimal value of the shape parameter proposed by Rippa in the setting of scattered data interpolation with RBFs. We discuss extensions of this approach that can be applied in the setting of iterated approximate moving least squares approximation of function value data and for RBF pseudo-spectral methods for the solution of partial differential equations. The former method can be viewed as an efficient alternative to ridge regression or smoothing spline approximation, while the latter forms an extension of the classical polynomial pseudo-spectral approach. Numerical experiments illustrating the use of our algorithms are included.  相似文献   
5.
In this paper, we consider multivariate interpolation with radial basis functions of finite smoothness. In particular, we show that interpolants by radial basis functions in ℝ d with finite smoothness of even order converge to a polyharmonic spline interpolant as the scale parameter of the radial basis functions goes to zero, i.e., the radial basis functions become increasingly flat.  相似文献   
6.
We introduce a vector differential operator P and a vector boundary operator B to derive a reproducing kernel along with its associated Hilbert space which is shown to be embedded in a classical Sobolev space. This reproducing kernel is a Green kernel of differential operator L:?=?P ???T P with homogeneous or nonhomogeneous boundary conditions given by B, where we ensure that the distributional adjoint operator P ??? of P is well-defined in the distributional sense. We represent the inner product of the reproducing-kernel Hilbert space in terms of the operators P and B. In addition, we find relationships for the eigenfunctions and eigenvalues of the reproducing kernel and the operators with homogeneous or nonhomogeneous boundary conditions. These eigenfunctions and eigenvalues are used to compute a series expansion of the reproducing kernel and an orthonormal basis of the reproducing-kernel Hilbert space. Our theoretical results provide perhaps a more intuitive way of understanding what kind of functions are well approximated by the reproducing kernel-based interpolant to a given multivariate data sample.  相似文献   
7.
In this paper we introduce a generalized Sobolev space by defining a semi-inner product formulated in terms of a vector distributional operator P consisting of finitely or countably many distributional operators P n , which are defined on the dual space of the Schwartz space. The types of operators we consider include not only differential operators, but also more general distributional operators such as pseudo-differential operators. We deduce that a certain appropriate full-space Green function G with respect to L := P *T P now becomes a conditionally positive function. In order to support this claim we ensure that the distributional adjoint operator P * of P is well-defined in the distributional sense. Under sufficient conditions, the native space (reproducing-kernel Hilbert space) associated with the Green function G can be embedded into or even be equivalent to a generalized Sobolev space. As an application, we take linear combinations of translates of the Green function with possibly added polynomial terms and construct a multivariate minimum-norm interpolant s f,X to data values sampled from an unknown generalized Sobolev function f at data sites located in some set X ì \mathbbRd{X \subset \mathbb{R}^d}. We provide several examples, such as Matérn kernels or Gaussian kernels, that illustrate how many reproducing-kernel Hilbert spaces of well-known reproducing kernels are equivalent to a generalized Sobolev space. These examples further illustrate how we can rescale the Sobolev spaces by the vector distributional operator P. Introducing the notion of scale as part of the definition of a generalized Sobolev space may help us to choose the “best” kernel function for kernel-based approximation methods.  相似文献   
8.
Some of the meshless radial basis function methods used for the numerical solution of partial differential equations are reviewed. In particular, the differences between globally and locally supported methods are discussed, and for locally supported methods the important role of smoothing within a multilevel framework is demonstrated. A possible connection between multigrid finite elements and multilevel radial basis function methods with smoothing is explored. Various numerical examples are also provided throughout the paper. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
9.
It is known that the critical condition which guarantees quadratic convergence of approximate Newton methods is an approximation of the identity condition. This requires that the composition of the numerical inversion of the Fréchet derivative with the derivative itself approximate the identity to an accuracy calibrated by the residual. For example, the celebrated quadratic convergence theorem of Kantorovich can be proven when this holds, subject to regularity and stability of the derivative map. In this paper, we study what happens when this condition is not evident a priori but is observed a posteriori. Through an in-depth example involving a semilinear elliptic boundary value problem, and some general theory, we study the condition in the context of dual norms, and the effect upon convergence. We also discuss the connection to Nash iteration.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号