首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   1篇
化学   7篇
数学   5篇
物理学   6篇
  2021年   1篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2013年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
排序方式: 共有18条查询结果,搜索用时 0 毫秒
1.
The self-assembly of open ditopic and tetratopic cavitand complexes has been investigated by using monofunctionalized cavitand ligands and suitable metal precursors. In the case of ditopic complexes, self-assembly protocols, leading exclusively to the formation of both thermodynamically stable cis-Pt square-planar complexes 8 and 9 and the kinetically inert fac-Re octahedral complex 14, have been elaborated. The use of cis-[Pt(CH3)CN)2Cl2] as metal precursor led to the formation of monotopic trans-10 and ditopic trans-11 cavitand complexes, while cis-[Pt(dmso)2Cl2] afforded both cis-13 and trans-11 isomers. The self-assembly of tetratopic cavitand complexes has been achieved by using mononuclear [Pd(CH3CN)4(BF4)2] and dinuclear [M2(tppb)(OTf)4] (19: M = Pt; 20: M = Pd) metal precursors. Only the tetratopic dinuclear complexes 21 and 22 were stable. The ligand configuration with two phosphorus and two cavitand ligands at the metal centers is the most appropriate to build tetratopic cavitand complexes with sufficient kinetic stability.  相似文献   
2.
We report here a multistep route for the immobilization of DNA and proteins on chemically modified gold substrates using fourth-generation NH(2)-terminated poly(amidoamine) dendrimers supported by an underlying amino undecanethiol (AUT) self-assembled monolayer (SAM). Bioactive ultrathin organic films were prepared via layer-by-layer self-assembly methods and characterized by fluorescence microscopy, variable angle spectroscopic ellipsometry, atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and attenuated total internal reflection Fourier transform infrared spectroscopy (ATR-FTIR). The thickness of the AUT SAM base layer on the gold substrates was determined to be 1.3 nm from ellipsometry. Fluorescence microscopy and AFM measurements, in combination with analyses of the XPS/ATR-FTIR spectra, confirmed the presence of the dendrimer/biopolymer molecules on the multilayer sensor surfaces. Model proteins, including streptavidin and rabbit immunoglobulin proteins, were covalently attached to the dendrimer layer using linear cross-linking reagents. Through surface plasmon resonance measurements, we found that sensor surfaces containing a dendrimer layer displayed an increased protein immobilization capacity, compared to AUT SAM sensor surfaces without dendrimer molecules. Other SPR studies also revealed that the dendrimer-based surfaces are useful for the sensitive and specific detection of DNA-DNA interactions. Significantly, the multicomponent films displayed a high level of stability during repeated regeneration and hybridization cycles, and the kinetics of the DNA-DNA hybridization process did not appear to be influenced by surface mass transport limiting effects.  相似文献   
3.
Abstract

In the past decade, the problem of soil and groundwater contaminations has emerged as a crucial one and has received renewed attention from the scientific community. Although still incomplete, our knowledge of the phenomena governing the fate and transport of pollutants in the soil environment has improved significantly. One of the most important sub-surface phenomena is adsorption on soil particles. Because adsorption is very much dependent on the type of chemical involved (organic, metal, ionic compound), this review only focuses on the adsorption of volatile organic contaminants on soil and soil constituents. The current understanding and hypotheses pertaining to this subject are discussed for single component adsorption and multicomponent adsorption.  相似文献   
4.
In the last decade, there have been several attempts to understand the relations between the many models of analog computation. Unfortunately, most models are not equivalent. Euler's Gamma function, which is computable according to computable analysis, but that cannot be generated by Shannon's General Purpose Analog Computer (GPAC), has often been used to argue that the GPAC is less powerful than digital computation. However, when computability with GPACs is not restricted to real-time generation of functions, it has been shown recently that Gamma becomes computable by a GPAC. Here we extend this result by showing that, in an appropriate framework, the GPAC and computable analysis are actually equivalent from the computability point of view, at least in compact intervals. Since GPACs are equivalent to systems of polynomial differential equations then we show that all real computable functions over compact intervals can be defined by such models.  相似文献   
5.
6.
Geometriae Dedicata - Given a pants decomposition $$\mathcal {PC} = \{\sigma _1, \ldots , \sigma _{\xi }\}$$ on a hyperbolizable surface $$\Sigma $$ and a vector $${{\underline{c}}}= (c_1, \ldots ,...  相似文献   
7.
An Analog Characterization of the Grzegorczyk Hierarchy   总被引:1,自引:0,他引:1  
We study a restricted version of Shannon's general purpose analog computer in which we only allow the machine to solve linear differential equations. We show that if this computer is allowed to sense inequalities in a differentiable way, then it can compute exactly the elementary functions, the smallest known recursive class closed under time and space complexity. Furthermore, we show that if the machine has access to a function f(x) with a suitable growth as x goes to infinity, then it can compute functions on any given level of the Grzegorczyk hierarchy. More precisely, we show that the model contains exactly the nth level of the Grzegorczyk hierarchy if it is allowed to solve n−3 non-linear differential equations of a certain kind. Therefore, we claim that, at least in this region of the complexity hierarchy, there is a close connection between analog complexity classes, the dynamical systems that compute them, and classical sets of subrecursive functions.  相似文献   
8.
The basic motivation behind this work is to tie together various computational complexity classes, whether over different domains such as the naturals or the reals, or whether defined in different manners, via function algebras (Real Recursive Functions) or via Turing Machines (Computable Analysis). We provide general tools for investigating these issues, using two techniques we call approximation and lifting. We use these methods to obtain two main theorems. First, we provide an alternative proof of the result from Campagnolo et al. (J Complex 18:977–1000, 2002), which precisely relates the Kalmar elementary computable functions to a function algebra over the reals. Second, we build on that result to extend a result of Bournez and Hainry (Theor Comput Sci 348(2–3):130–147, 2005), which provided a function algebra for the real elementary computable functions; our result does not require the restriction to functions. In addition to the extension, we provide an alternative approach to the proof. Their proof involves simulating the operation of a Turing Machine using a function algebra. We avoid this simulation, using a technique we call lifting, which allows us to lift the classic result regarding the elementary computable functions to a result on the reals. The two new techniques bring a different perspective to these problems, and furthermore appear more easily applicable to other problems of this sort.   相似文献   
9.
The main goal of the present research is to analyze tensile fracture in Al 7075-T6 thin plates weakened by blunt V-notches. For this purpose, first, 27 fracture tests are carried out on rectangular plates containing a central rhombic hole with two blunt V-shaped corners horizontally located. The experimental observations indicated that a plastic region initiates from the notch tip and grows as the tensile load monotonically increases, and finally, fracture happens suddenly with a significant opening of the notch tip. By showing significant plastic deformations around the notch tip and also inclined fracture planes, the specimens after fracture confirm well the ductile rupture in V-notched Al 7075-T6 plates. As the main experimental result, the load-carrying capacity of the notched plates corresponding to the onset of crack initiation from the notch tip is recorded. To theoretically predict the experimental results, the equivalent material concept is utilized together with the well-known brittle fracture criterion, namely the averaged strain energy density criterion. Without requiring elastic-plastic finite element analysis, it is shown that the combination of the averaged strain energy density and equivalent material concept is successful in predicting the load-carrying capacity of the V-notched Al 7075-T6 plates that fail by moderate-scale yielding regime.  相似文献   
10.
The X-ray study of self-assembled coordination cage 1, constituted of two tetrapyridyl-substituted resorcin[4]arene cavitands coupled through four square-planar palladium complexes is reported. The coordination cage, embracing an internal cavity of ca. 840 Å3, reveals to have the right size for the inclusion of large molecules such as fullerenes. Cage 1 forms 1:1 complexes with methano[60]fullerene derivatives 3 and 4 bearing a dimethyl and a diethyl malonate addend, respectively. Evidence for inclusion complexation was provided by 1H NMR spectroscopic studies and ESI-MS investigations, which unambiguously showed the formation of 1:1 fullerene-cage complexes. The association constants (Ka) were experimentally determined to be ca. 150 M−1 at 298 K in CD2Cl2. In both complexes 1·3 and 1·4, the malonate residue is threaded through one of the four lateral portals, as clearly shown by docking simulations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号