首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   292篇
  免费   2篇
  国内免费   1篇
化学   192篇
晶体学   27篇
力学   11篇
数学   38篇
物理学   27篇
  2021年   2篇
  2020年   3篇
  2019年   3篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2015年   3篇
  2014年   2篇
  2013年   16篇
  2012年   11篇
  2011年   24篇
  2010年   9篇
  2009年   5篇
  2008年   18篇
  2007年   9篇
  2006年   17篇
  2005年   17篇
  2004年   10篇
  2003年   17篇
  2002年   16篇
  2001年   10篇
  2000年   9篇
  1999年   3篇
  1998年   6篇
  1997年   6篇
  1996年   5篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   6篇
  1991年   3篇
  1990年   4篇
  1989年   5篇
  1988年   4篇
  1987年   4篇
  1986年   3篇
  1985年   3篇
  1984年   3篇
  1983年   3篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1977年   3篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1969年   1篇
  1968年   1篇
  1962年   1篇
  1961年   1篇
排序方式: 共有295条查询结果,搜索用时 15 毫秒
1.
The interaction of AlR2(BHT)(OEt2) and AlMe(BHT)2 with methylmethacrylate (MMA) leads to the formation of the Lewis acid-base complexes AlR2(BHT)(MMA) [R = Me (1), Et (2)] and AlMe-(BHT)2(MMA) (3), respectively. The molecular structure of 1 has been determined by X-ray crystallography. The decrease in the C=O and C=C stretching frequencies in the IR spectrum, and downfield shift in the 13C NMR spectrum of the - and γ-carbons of the MMA, when compared to free MMA, is presented with respect to the activator ability of sterically crowded aryloxide compounds of aluminum to aluminum-porphyrin catalyzed (Inoue) polymerization of MMA.  相似文献   
2.
The reaction of AlMe(3) and [((t)Bu)(2)Al(micro-OPh)](2) with pyrazine (pyz), 4,4'-bipyridine (4-4'-bipy), 1,2-bis(4-pyridyl)ethane (bpetha) and 1,2-bis(4-pyridyl)ethylene (bpethe) yields (Me(3)Al)(2)(micro-pyz)(1), (Me(3)Al)(2)(micro-4,4'-bipy)(2), (Me(3)Al)(2)(micro-bpetha)(3), (Me(3)Al)(2)(micro-bipethe)(4), Al((t)Bu)(2)(OPh)(pyz)(5), [((t)Bu)(2)Al(OPh)](2)(micro-4,4-bipy)(6a), [((t)Bu)(2)Al(OPh)](2)(micro-bpetha)(7a), [((t)Bu)(2)Al(OPh)](2)(micro-bipethe)(8a). Compounds 1-4, 6a and 7a have been confirmed by X-ray crystallography. In solution compounds 1-4 undergo a rapid ligand-dissociation equilibrium resulting in a time-average spectrum in the (1)H NMR. In contrast, the solution equilibria for compounds 5-8a are sufficiently slow such that the mono-aluminium compounds may be observed by (1)H NMR spectroscopy: Al((t)Bu)(2)(OPh)(4,4-bipy)(6b), Al((t)Bu)(2)(OPh)(bpetha)(7b) and Al((t)Bu)(2)(OPh)(bpethe)(8b). The inability to isolate [((t)Bu)(2)Al(OPh)](2)(micro-pyz) and the relative stability of each complex is discussed with respect to the steric interactions across the bridging ligand (L) and the electronic effect on one Lewis acid-base interaction by the second Lewis acid-base interaction on the same ligand.  相似文献   
3.
Time-reversal arguments are used to relate the sign of the magnetic Raman optical activity in corresponding Stokes and anti-Stokes bands in the two distinct cases of a system with an odd and an even number of electrons. Observations on IrCl2?6 are reported which confirm some of the predictions.  相似文献   
4.
Thermodynamic and mechanistic features of the chalcogen exchange reaction between [RGa( 3-Te)]4 and elemental sulfur or selenium have been studied employing density functional theory (DFT) calculations using the BL3YP basis set and Stuttgart pseudopotentials. For [MeGa( 3-E)]4 (E=S, Se, Te) the correlation between the calculated parameters and diffraction data for their isolable analogs is greater than 98%. Each step of the conversion of [MeGa( 3-Te)]4 to [MeGa( 3-E)]4 via [Me4Ga4( 3-Te)4–x ( 3-E) x ] (E=S, Se) is predicted to occur as a series of isolated reactions. The entropy change for each chalcogen exchange is small in magnitude and corresponds to the degree of cage distortion within the cubane molecules. Calculations performed on [MeGa( 3-Te)]4...S8 and [MeGa( 3-Te)]4-S suggest that an increase in electrophilicity of the gallium next to a surface bound tellurium may result in nucleophilic cage opening for which intermediate structures are calculated.  相似文献   
5.
It is demonstrated that the upper and lower values of a two-person, zero-sum differential game solve the respective upper and lower Isaacs' equations in the viscosity sense (introduced by Crandall and Lions (Trans. Amer. Math. Soc. 277 (1983), 1–42). Since such solutions are unique, this yields a fairly simple proof that the game has value should the minimax condition hold. As a further application of viscosity techniques, a new and simpler proof that the upper and lower values can be approximated by the values of certain games with Lipschitz controls is given.  相似文献   
6.
The necessity for microchannel wall coatings in capillary and chip-based electrophoretic analysis of biomolecules is well understood. The regulation or elimination of EOF and the prevention of analyte adsorption is essential for the rapid, efficient separation of proteins and DNA within microchannels. Microchannel wall coatings and other wall modifications are especially critical for protein separations, both in fused-silica capillaries, and in glass or polymeric microfluidic devices. In this review, we present a discussion of recent advances in microchannel wall coatings of three major classes--covalently linked polymeric coatings, physically adsorbed polymeric coatings, and small molecule additives. We also briefly review modifications useful for polymeric microfluidic devices. Within each category of wall coatings, we discuss those used to eliminate EOF, to tune EOF, to prevent analyte adsorption, or to perform multiple functions. The knowledgeable application of the most promising recent developments in this area will allow for the separation of complex protein mixtures and for the development of novel microchannel wall modifications.  相似文献   
7.
Physically adsorbed (dynamic) polymeric wall coatings for microchannel electrophoresis have distinct advantages over covalently linked coatings. In order to determine the critical factors that control the formation of dynamic wall coatings, we have created a set of model polymers and copolymers based on N,N-dimethylacrylamide (DMA) and N,N-diethylacrylamide (DEA), and studied their adsorption behavior from aqueous solution as well as their performance for microchannel electrophoresis of DNA. This study is revealing in terms of the polymer properties that help create an "ideal" wall coating. Our measurements indicate that the chemical nature of the coating polymer strongly impacts its electroosmotic flow (EOF) suppression capabilities. Additionally, we find that a critical polymer chain length is required for polymers of this type to perform effectively as microchannel wall coatings. The effective mobilities of double-stranded (dsDNA) fragments within dynamically coated capillaries were determined in order to correlate polymer hydrophobicity with separation performance. Even for dsDNA, which is not expected to be a strongly adsorbing analyte, wall coating hydrophobicity has a deleterious influence on separation performance.  相似文献   
8.
End-labeled free-solution electrophoresis of DNA   总被引:1,自引:0,他引:1  
DNA is a free-draining polymer. This subtle but "unfortunate" property of highly charged polyelectrolytes makes it impossible to separate nucleic acids by free-flow electrophoresis. This is why one must typically use a sieving matrix, such as a gel or an entangled polymer solution, in order to obtain some electrophoretic size separation. An alternative approach consists of breaking the charge to friction balance of free-draining DNA molecules. This can be achieved by labeling the DNA with a large, uncharged molecule (essentially a hydrodynamic parachute, which we also call a drag-tag) prior to electrophoresis; the resulting methodology is called end-labeled free-solution electrophoresis (ELFSE). In this article, we review the development of ELFSE over the last decade. In particular, we examine the theoretical concepts used to predict the ultimate performance of ELFSE for single-stranded (ssDNA) sequencing, the experimental results showing that ELFSE can indeed overcome the free-draining issue raised above, and the technological advances that are needed to speed the development of competitive ELFSE-based sequencing and separation technologies. Finally, we also review the reverse process, called free-solution conjugate electrophoresis (FSCE), wherein uncharged polymers of different sizes can be analyzed using a short DNA molecule as an electrophoretic engine.  相似文献   
9.
10.
DNA sequencing and genotyping in miniaturized electrophoresis systems   总被引:4,自引:0,他引:4  
Kan CW  Fredlake CP  Doherty EA  Barron AE 《Electrophoresis》2004,25(21-22):3564-3588
Advances in microchannel electrophoretic separation systems for DNA analyses have had important impacts on biological and biomedical sciences, as exemplified by the successes of the Human Genome Project (HGP). As we enter a new era in genomic science, further technological innovations promise to provide other far-reaching benefits, many of which will require continual increases in sequencing and genotyping efficiency and throughput, as well as major decreases in the cost per analysis. Since the high-resolution size- and/or conformation-based electrophoretic separation of DNA is the most critical step in many genetic analyses, continual advances in the development of materials and methods for microchannel electrophoretic separations will be needed to meet the massive demand for high-quality, low-cost genomic data. In particular, the development (and commercialization) of miniaturized genotyping platforms is needed to support and enable the future breakthroughs of biomedical science. In this review, we briefly discuss the major sequencing and genotyping techniques in which high-throughput and high-resolution electrophoretic separations of DNA play a significant role. We review recent advances in the development of technology for capillary electrophoresis (CE), including capillary array electrophoresis (CAE) systems. Most of these CE/CAE innovations are equally applicable to implementation on microfabricated electrophoresis chips. Major effort is devoted to discussing various key elements needed for the development of integrated and practical microfluidic sequencing and genotyping platforms, including chip substrate selection, microchannel design and fabrication, microchannel surface modification, sample preparation, analyte detection, DNA sieving matrices, and device integration. Finally, we identify some of the remaining challenges, and some of the possible routes to further advances in high-throughput DNA sequencing and genotyping technologies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号