首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   2篇
化学   4篇
力学   10篇
数学   4篇
物理学   3篇
  2019年   2篇
  2016年   2篇
  2015年   2篇
  2014年   3篇
  2013年   1篇
  2011年   1篇
  2010年   3篇
  2009年   2篇
  2006年   1篇
  2005年   1篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
排序方式: 共有21条查询结果,搜索用时 46 毫秒
1.
2.
Let a open subset of n , n3, and an open. Existence and unicity are proved for the Dirichlet problem
It is assumed that the linear part of satisfy the conditions of Hervé, (·,u,u): ×× n satisfy Carathéodory's condition and structure conditions (H1), (H2) and (H3) below. Let H denote the sheaf of L-solutions, we prove that (,H) is a nonlinear Bauer harmonic space.  相似文献   
3.
4.
Weighted FOM and GMRES for solving nonsymmetric linear systems   总被引:1,自引:0,他引:1  
Essai  Azeddine 《Numerical Algorithms》1998,18(3-4):277-292
This paper presents two new methods called WFOM and WGMRES, which are variants of FOM and GMRES, for solving large and sparse nonsymmetric linear systems. To accelerate the convergence, these new methods use a different inner product instead of the Euclidean one. Furthermore, at each restart, a different inner product is chosen. The weighted Arnoldi process is introduced for implementing these methods. After describing the weighted methods, we give the relations that link them to FOM and GMRES. Experimental results are presented to show the good performances of the new methods compared to FOM(m) and GMRES(m). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
5.
The purpose of this study is the active control of flow separation on an ONERA D airfoil, using continuous blowing microjets. Particle Image Velocimetry (PIV) is used to measure velocity fields at midspan around the airfoil in both controlled and uncontrolled cases. Post-processing based on Proper Orthogonal Decomposition (POD) is developed to exhibit the main energetic features of the flow. Therefore, the detailed study of the POD modes for separated and stalled cases leads to a better understanding of the control mechanisms. Moreover, the POD basis computed for uncontrolled and controlled cases, opens the way to optimisation of control strategies. To cite this article: J. Favier, A. Kourta, C. R. Mecanique 334 (2006).  相似文献   
6.
A model of a generic vehicle shape, the Ahmed body with a 25° slant, is equipped with an array of blowing steady microjets 6 mm downstream of the separation line between the roof and the slanted rear window. The goal of the present study is to evaluate the effectiveness of this actuation method in reducing the aerodynamic drag, by reducing or suppressing the 3D closed separation bubble located on the slanted surface. The efficiency of this control approach is quantified with the help of aerodynamic load measurements. The changes in the flow field when control is applied are examined using PIV and wall pressure measurements and skin friction visualisations. By activating the steady microjet array, the drag coefficient was reduced by 9–14% and the lift coefficient up to 42%, depending on the Reynolds number. The strong modification of the flow topology under progressive flow control is particularly studied.  相似文献   
7.
In this paper, we study the quantum properties of the three-mode squeezed operator. This operator is constructed from the optical parametric oscillator based on the three concurrent χ(2) nonlinearities. We give a complete treatment for this operator including the symmetric and asymmetric nonlinearity cases. The action of the operator on the number and coherent states is studied in the framework of squeezing, second-order correlation function, Cauchy-Schwartz inequality and single-mode quasiprobability function. The nonclassical effects are remarkable in all these quantities. We show that the nonclassical effects generated by the asymmetric case-for certain values of the system parameters-are greater than those of the symmetric one. This reflects the important role for the asymmetry in the system. Moreover, the system can generate particular types of the superposition states.  相似文献   
8.
9.
Zinc oxide (ZnO) nanostructures have attracted much interest due to their potential applications in various fields including optoelectronics, glass industries, and solar cells. These compounds hold the promise of creating new materials that can advance energy technologies. In this work, a series of (ZnO)6 clusters with selenium and tellurium applied as substitutional impurities has been studied. The investigated structures have been produced through the doping of (ZnO)6 clusters by replacing an oxygen atom with a selenium or a tellurium atom at each time. The ground state geometric parameters of (ZnO)6 structures, containing selenium or tellurium atoms as substitutional impurities, were calculated using density functional theory (DFT) with B3LYP and LanL2DZ basis set. Excited state energies and absorption wavelengths were computed using time‐dependent‐DFT (TDDFT). For the calculation of emission wavelengths, Hartree–Fock configuration interaction singles (HF/CIS) has been used in order to perform the excited state geometry optimization. This work led to some important results that can be helpful for developing novel THz sensitive materials and imaging detectors that may be an alternative to x‐rays detectors for radiology as well as for the development of solar cells and electroluminescent diodes. Zinc oxide (ZnO) nanostructures have attracted growing interest due to their potential applications in many technological fields, including optoelectronics, the glass industry, and energy. The presence of impurities, in particular selenium and tellurium, in ZnO‐based clusters can affect their structural and spectroscopic properties. Some of these doped nanostructures have favorable Terahertz emission characteristics that make them good candidates for applications in biology and medicine.  相似文献   
10.
New development constraints prompted by new pollutant emissions and fuel consumption standards (Corporate Average Economy Fuel) require that automobile manufacturers develop new flow control devices capable of reducing the aerodynamic drag of motor vehicles. The solutions envisaged must have a negligible impact on the vehicle geometry. In this context, flow control by continuous suction is seen as a promising alternative. The control configurations identified during a previous 2D numerical analysis are adapted for this purpose and are tested on a 3D geometry. A local suction system located on the upper part of the rear window is capable of eliminating the rear window separation on simplified fastback car geometry. Aerodynamic drag reductions close to 17% have been obtained. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号