首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   2篇
化学   68篇
力学   2篇
数学   15篇
物理学   19篇
  2023年   4篇
  2022年   1篇
  2020年   2篇
  2019年   6篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2013年   1篇
  2012年   6篇
  2011年   10篇
  2010年   5篇
  2009年   9篇
  2008年   2篇
  2007年   3篇
  2006年   4篇
  2005年   3篇
  2004年   6篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  1998年   1篇
  1994年   2篇
  1992年   4篇
  1990年   1篇
  1988年   1篇
  1983年   1篇
  1981年   1篇
  1980年   2篇
  1979年   3篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1974年   1篇
  1942年   1篇
  1930年   1篇
  1929年   2篇
  1863年   2篇
排序方式: 共有104条查询结果,搜索用时 31 毫秒
1.
2.
3.
Plasmepsin II (PMII), a malarial aspartic protease involved in the catabolism of hemoglobin in parasites of the genus Plasmodium, and renin, a human aspartic protease, share 35% sequence identity in their mature chains. Structures of 4‐arylpiperidine inhibitors complexed to human renin were reported by Roche recently. The major conformational changes, compared to a structure of renin, with a peptidomimetic inhibitor were identified and subsequently modeled in a structure of PMII (Fig. 1). This distorted structure of PMII served as active‐site model for a novel class of PMII inhibitors, according to a structure‐based de novo design approach (Fig. 2). These newly designed inhibitors feature a rigid 7‐azabicyclo[2.2.1]heptane scaffold, which, in its protonated form, is assumed to undergo ionic H‐bonding with the two catalytic Asp residues at the active site of PMII. Two substituents depart from the scaffold for occupancy of either the S1/S3 or S2′‐pocket and the hydrophobic flap pocket, newly created by the conformational changes in PMII. The inhibitors synthesized starting from N‐Boc‐protected 7‐azabicyclo[2.2.1]hept‐2‐ene ( 6 ; Schemes 15) displayed up to single‐digit micromolar activity (IC50 values) toward PMII and good selectivity towards renin. The clear structure? activity relationship (SAR; Table) provides strong validation of the proposed conformational changes in PMII and the occupancy of the resulting hydrophobic flap pocket by our new inhibitors.  相似文献   
4.
A new class of nonpeptidic inhibitors of the malarial aspartic protease plasmepsin II (PMII) with up to single‐digit micromolar activities (IC50 values) was developed by structure‐based de novo design. The active‐site matrix used in the design was based on an X‐ray crystal structure of PMII, onto which the major conformational changes seen in the structure of renin upon complexation of 4‐arylpiperidines – including the unlocking of a new hydrophobic (flap) pocket – were modeled. The sequence identity of 35% between mature renin and PMII had prompted us to hypothesize that an induced‐fit adaptation around the active site as observed in renin might also be effective in PMII. The new inhibitors contain a central 11‐azatricyclo[6.2.1.02,7]undeca‐2(7),3,5‐triene core, which, in protonated form, undergoes ionic H‐bonding with the two catalytic Asp residues at the active site of PMII (Figs. 1 and 2). This tricyclic scaffold is readily prepared by a Diels? Alder reaction between an activated pyrrole and a benzyne species generated in situ (Scheme 1). Two substituents with naphthyl or 1,3‐benzothiazole moieties are attached to the central core (Schemes 14) for accommodation in the hydrophobic flap and S1/S3 (or S2′, depending on the optical antipode of the inhibitor) pockets at the active site of the enzyme. The most‐potent inhibitors (±)‐ 19a – 19c (IC50 3–5 μM ) and (±)‐ 23b (2 μM ) (Table) bear an additional Cl‐atom on the 1,3‐benzothiazole moiety to fully fill the rear of the flap pocket. Optimization of the linker between the tricyclic scaffold and the 1,3‐benzothiazole moiety, based on detailed conformational analysis (Figs. 3 and 4), led to a further small increase in inhibitory strength. The new compounds were also tested against other aspartic proteases. They were found to be quite selective against renin, while the selectivity against cathepsin D and E, two other human aspartic proteases, is rather poor (Table). The detailed SARs established in this investigation provide a valuable basis for the design of the next generations of more‐potent and ‐selective PMII inhibitors with potential application in a new antimalarial therapy.  相似文献   
5.
In this article spatial and temporal regularity of the solution process of a stochastic partial differential equation (SPDE) of evolutionary type with nonlinear multiplicative trace class noise is analyzed.  相似文献   
6.

High-dimensional partial differential equations (PDEs) appear in a number of models from the financial industry, such as in derivative pricing models, credit valuation adjustment models, or portfolio optimization models. The PDEs in such applications are high-dimensional as the dimension corresponds to the number of financial assets in a portfolio. Moreover, such PDEs are often fully nonlinear due to the need to incorporate certain nonlinear phenomena in the model such as default risks, transaction costs, volatility uncertainty (Knightian uncertainty), or trading constraints in the model. Such high-dimensional fully nonlinear PDEs are exceedingly difficult to solve as the computational effort for standard approximation methods grows exponentially with the dimension. In this work, we propose a new method for solving high-dimensional fully nonlinear second-order PDEs. Our method can in particular be used to sample from high-dimensional nonlinear expectations. The method is based on (1) a connection between fully nonlinear second-order PDEs and second-order backward stochastic differential equations (2BSDEs), (2) a merged formulation of the PDE and the 2BSDE problem, (3) a temporal forward discretization of the 2BSDE and a spatial approximation via deep neural nets, and (4) a stochastic gradient descent-type optimization procedure. Numerical results obtained using TensorFlow in Python illustrate the efficiency and the accuracy of the method in the cases of a 100-dimensional Black–Scholes–Barenblatt equation, a 100-dimensional Hamilton–Jacobi–Bellman equation, and a nonlinear expectation of a 100-dimensional G-Brownian motion.

  相似文献   
7.
Conflicting results reported on the effects of hyperoxia on cerebral hemodynamics have been attributed mainly to methodical and species differences. In the present study contrast-enhanced magnetic resonance imaging (MRI) perfusion measurement was used to analyze the influence of hyperoxia (fraction of inspired oxygen (FiO2) = 1.0) on regional cerebral blood flow (rCBF) and regional cerebral blood volume (rCBV) in awake, normoventilating volunteers (n = 19). Furthermore, the experiment was repeated in 20 volunteers for transcranial Doppler sonography (TCD) measurement of cerebral blood flow velocity in the middle cerebral artery (CBFV(MCA)). When compared to normoxia (FiO2 = 0.21), hyperoxia heterogeneously influenced rCBV (4.95 +/- 0.02 to 12.87 +/- 0.08 mL/100g (FiO2 = 0.21) vs. 4.50 +/- 0.02 to 13.09 +/- 0.09 mL/100g (FiO2 = 1.0). In contrast, hyperoxia diminished rCBF in all regions (68.08 +/- 0.38 to 199.58 +/- 1.58 mL/100g/min (FiO2 = 0.21) vs. 58.63 +/- 0.32 to 175.16 +/- 1.51 mL/100g/min (FiO2 = 1.0)) except in parietal and left frontal gray matter. CBFV(MCA) remained unchanged regardless of the inspired oxygen fraction (62 +/- 9 cm/s (FiO2 = 0.21) vs. 64 +/- 8 cm/s (FiO2 = 1.0)). Finding CBFV(MCA) unchanged during hyperoxia is consistent with the present study's unchanged rCBF in parietal and left frontal gray matter. In these fronto-parietal regions predominantly fed by the middle cerebral artery, the vasoconstrictor effect of oxygen was probably counteracted by increased perfusion of foci of neuronal activity controlling general behavior and arousal.  相似文献   
8.
9.
10.
Several novel aromatic ketone‐based two‐photon initiators containing triple bonds and dialkylamino groups were synthesized and the structure‐activity relationships were evaluated. Branched alkyl chains were used at the terminal donor groups to improve the solubility in the multifunctional monomers. Because of the long conjugation length and good coplanarity, the evaluated initiators showed large two‐photon cross section values, while their fluorescence lifetimes and quantum yields strongly depend on the solvent polarity. All novel initiators exhibited high activity in terms of two‐photon‐induced microfabrication. This is especially true for fluorenone‐based derivatives, which displayed much broader processing windows than well‐known highly active initiators from the literature and commercially available initiators. While the new photoinitiators gave high reactivity in two‐photon‐induced photopolymerization at concentration as low as 0.1% wt, these compounds are surprisingly stable under one photon condition and nearly no photo initiation activity was found in classical photo DSC experiment. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号