首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   210篇
  免费   10篇
  国内免费   1篇
化学   149篇
晶体学   1篇
力学   11篇
数学   16篇
物理学   44篇
  2023年   2篇
  2021年   2篇
  2020年   3篇
  2019年   4篇
  2018年   4篇
  2017年   4篇
  2016年   8篇
  2015年   5篇
  2014年   3篇
  2013年   15篇
  2012年   21篇
  2011年   18篇
  2010年   7篇
  2009年   12篇
  2008年   13篇
  2007年   8篇
  2006年   13篇
  2005年   10篇
  2004年   3篇
  2003年   7篇
  2002年   4篇
  2001年   3篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   3篇
  1995年   4篇
  1994年   1篇
  1993年   1篇
  1992年   4篇
  1991年   2篇
  1990年   3篇
  1987年   4篇
  1986年   2篇
  1985年   5篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1978年   3篇
  1977年   2篇
  1973年   2篇
  1972年   1篇
排序方式: 共有221条查询结果,搜索用时 15 毫秒
1.
5-Alkynylpyridazin-3(2H)-ones or 5-(2-chloroalkenyl)pyridazin-3(2H)-ones were isolated during the cleavage of the methoxymethyl group in a series of 5-alkynyl-2-methoxymethylpyridazin-3(2H)-ones by treatment with hydrochloric acid. The efficient and selective cleavage of the methoxymethyl group in these compounds can be performed under mild conditions by employing aluminium chloride.  相似文献   
2.
Hydrogen peroxide in basic media is proposed as a means for dissolving whole blood samples to be analyzed by electrothermal atomization atomic absorption spectrometry, ET AAS. Approximately 2 g of the whole blood sample were directly weighed in a 150 mL volumetric flask; 3 mL of a NaOH 0.2 mol L−1 solution, two drops of 1-octanol, as an antifoaming agent, and 1 mL of 30% volume hydrogen peroxide were added to the flask to promote oxidation. The solution was then manually shaken and after approximately three minutes of shaking, a clear solution, with no apparent suspended solids or greasy layers, was obtained. Distilled-deionized water was used to complete the volume. Ten μL of the resulting solution along with 10 μL of a solution containing 5000 mg L−1 of NH4H2PO4 and 300 mg L−1 of Mg(NO3)2 as a modifier, were injected into transversely heated graphite tubes for lead determination. Both aqueous standards and standard addition calibration curves produced results not significantly different at a 95% confidence limit level. Accuracy of the measurements was assessed by analysis of the IAEA A-13 (concentration of trace and minor elements in freeze dried animal blood) standard reference material containing 0.18 mg L−1 lead on a dry basis and by means of recovery tests. Analysis of the IAEA A-13 standard produced 0.17 ± 0.02 mg L−1 lead on a dry basis; recovery tests afforded values from 95 to 105%. Ten consecutive measurements of a 5 ppb lead solution gave a characteristic mass of 47.2 pg and a (3S) detection limit of 1.77 μg L−1 Pb. Results obtained from analysis of whole blood samples of volunteer donors covered a lead concentration range between 8 and 21 μg L−1 with a mean value of 11.9 ± 4.7 μg L−1.  相似文献   
3.
A simple procedure for the determination of manganese in different sections of human brain samples by graphite furnace atomic absorption spectrometry has been developed. Brain sections included cerebellum, hypothalamus, frontal cortex, vermix and encephalic trunk. Two sample preparation procedures were evaluated, namely, slurry sampling and microwave-assisted acid digestion. Brain slurries (2% w/v) could be prepared in distilled, de-ionized water, with good stability for up to 30 min. Brain samples were also digested in a domestic microwave oven using 5 ml of concentrated HNO3. A mixed palladium+magnesium nitrate chemical modifier was used for thermal stabilization of the analyte in the electrothermal atomizer up to pyrolysis temperatures of 1300 °C, irrespective of the matrix. Quantitation of manganese was conducted in both cases by means of aqueous standards calibration. The detection limits were 0.3 and 0.4 ng ml−1 for the slurry and the digested samples, respectively. The accuracy of the procedure was checked by comparing the results obtained in the analysis of slurries and digested brain samples, and by analysis of the NIST Bovine Liver standard reference material (SRM 1577a). The ease of slurry preparation, together with the conventional set of analytical and instrumental conditions selected for the determination of manganese make such methodology suitable for routine clinical applications.  相似文献   
4.
5.
6.
Methods are described for the determination of trace levels of calcium in steels by atomic-absorption and atomic-emission spectrometry with a carbon furnace for atomization and excitation. In both cases, a commercial electrothermal atomic-absorption instrument was used. Samples were analysed after dissolution in a mixture of nitric, hydrochloric, and hydrofluoric acids.  相似文献   
7.
Summary The complex [RuH(CO)(NCMe)2(PPh3)2]BF4 (1) is an efficient and regioselective catalyst precursor for the hydrogenation of polyaromatic nitrogen compounds such as quinoline (Q), isoquinoline (iQ), indole (ln), 5,6- and 7,8-benzoquinoline (BQ) and acridine (A) under relatively mild reaction conditions (125 °C, 4 atm H2). The order of individual initial rates was: A > Q > 5,6-BQ > 7,8-BQ > ln > iQ, reflecting both steric and electronic effects. For the regioselective homogeneous hydrogenation of A to 9,10-dihydroacridine (DHA) catalysed by complex (1), a kinetic study was carried out; the experimentally determined rate law was r = k 1 [Ru] [H2]. These findings are consistent with a mechanism involving the hydrogenation of [RuH(CO)(A)(NCMe)(PPh3)2]BF4 to yield DHA and the unsaturated species [RuH(CO)(NCMe)(PPh3)2]BF4 in the rate-determining step.  相似文献   
8.
Summary The interaction of non-anhydrous solutions of the ligand 1,3-bis-(2-hydroxyphenyl)-1,3-propanedione (bhppH3) with hydrated rare earth chlorides resulted in the formation of anhydrous, non-solvated, complexes M(bhppH2)3 (M=Y, La, Nd, Pr, Sm or Yb). The complexes have been characterized by elemental analysis, t.g., i.r. and1H n.m.r. spectroscopy. The evidence suggests that the coordination is through the -diketone site.  相似文献   
9.
Alvarado JS  Rose C 《Talanta》2004,62(1):17-23
Traditional methodologies for the characterization of volatile organic compounds (VOCs) in subsurface soil are expensive, time-consuming processes that are often conducted on samples collected at random. The determination of VOCs in near-surface soils and vegetation is the foundation for a more efficient sampling strategy to characterize subsurface soil and improve understanding of environmental problems.In the absence of a standard methodology for the determination of VOCs in vegetation and in view of the high detection limits of the method for soils, we developed a methodology using headspace gas chromatography with an electron capture detector for the determination of low levels (parts-per-billion to parts-per-trillion) of VOCs in soils and vegetation. The technique demonstrates good sensitivity, good recoveries of internal standards and surrogate compounds, good performance, and minimal waste. A case study involving application of this technique as a first-step vadose-zone characterization methodology is presented.  相似文献   
10.
An efficient analytical method for the determination of low-levels of226Ra and224Ra by alpha spectrometry is described. A cation exchange column was used to separate the analyte from other constituents in the sample (1–50 mL). After preconcentration and separation, the radium was electrodeposited onto a stainless steel disc from a solution of ammonium oxalate and hydrochloric acid. The electrodeposition was accomplished by the addition of platinum in microgram amounts. Linear responses were greater than two orders of magnitude. Detection limits of the procedure, taken as three times the standard deviation of several reagent blank analyses, were (1.8±0.3)×10–4 Bq and (2.9±0.3)×10–4 Bq for226Ra and224Ra, respectively. Recoveries of226Ra and224Ra ranged from 90% to 100% when samples of drinking water, well water, and dissolved bones were analyzed. Precision was calculated to be less than 5% for the determination of226Ra. Matrix effects were studied for salts of barium, magnesium, iron, and calcium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号