首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   3篇
  国内免费   3篇
数学   1篇
物理学   5篇
  2021年   1篇
  2017年   1篇
  2016年   1篇
  2014年   2篇
  2013年   1篇
排序方式: 共有6条查询结果,搜索用时 31 毫秒
1
1.
在单次冲击压缩实验中,借助新建的瞬态拉曼光谱技术实现了对液态硝基甲烷冲击拉曼光谱的原位观测,来探究该样品分子在冲击波作用下的结构稳定性。实验发现,在10.6GPa的冲击加载下硝基甲烷的拉曼特征峰仅发生了蓝移和展宽,而在观测波段未发现化学变化产生的迹象。这一结果否定了文献所报道的硝基甲烷在6GPa~8.5GPa的单次冲击压力区间内发生了化学反应的推论,同时也证实了在10.6GPa的冲击压力下硝基甲烷分子在约为516ns的压缩时间内能够保持其结构的稳定。  相似文献   
2.
Since Wigner et al. proposed that hydrogen would become metallic under sufficient pressure compres- sions in 1935,scientists have paid their attention on making metallic hydrogen at high pressures, and con- siderable progresses were made in theoretical and ex- perimental researches. Nellis et al. observed that the electrical resistivity of fluid hydrogen declined by several orders of magnitude when liquid hydrogen was multiply shocked to 140 GPa, and concluded that fluid hydrogen underwent metallization phase tran- sition from semiconductor to metal in their experi- ments. Although further researches should be carried out to distinguish the highly conductive state and the metallic state of fluid hydrogen, researchers have made great efforts to find new technical approaches to de- crease the threshold pressure for hydrogen metalliza- tion. For this purpose, hydrogen-rich compounds at- tract much attention. Some researchers believed that non-hydrogen elements in those compounds may re- duce, to some extent, the activation energy of met- allization by the effect of chemical pre-compression. Silane, a typical hydrogen-rich compound of group IV hydrides, has been the subject of most of the theoretical and experimental research so far, and it was also expected to be a potential candidate for a high-To superconductor at high pressure research.[61 Compared to hydrocarbons,[71 the chemical bonds in the silane molecule are theoretically more sensitive to pressure and temperature. At sufficiently high pres- sure and temperature, the fluid silane possibly be- comes some metallic alloy consisting of hydrogen and silicon elements. Theoretical calculations showed thatthe metallic transition for the silane system may oc- cur even below 100 GPa, while there are also some other later articles that claimed that silane would re- main an insulator up to around 200 GPa and became metallic and supconducting at 220 GPa with a theo- retical Tc of 16 K. Recently, Eremets et al. have re- ported that silane can transform to metal at 50 GPa,  相似文献   
3.
对于子集$S\subseteq V(G)$,如果图$G$里的每一条$k$路都至少包含$S$中的一个点,那么我们称集合$S$是图$G$的一个$k$-路点覆盖.很明显,这个子集并不唯一.我们称最小的$k$-路点覆盖的基数为$k$-路点覆盖数, 记作$\psi_k(G)$.本文给出了一些笛卡尔乘积图上$\psi_k(G)$值的上界或下界.  相似文献   
4.
The strength always exists before the material melts. In this paper, the viscoelastic-plastic model is applied to improve the finite difference method, and the numerical solutions for the disturbance amplitude damping behavior of the sinusoidal shock front in a flyer-impact experiment are obtained. When the aluminum is shocked to 101 GPa, the effect of elastoplasticity on the zero-amplitude point of the oscillatory damping curve is the same as that of viscosity when η = 700 Pa·s,and the real shear viscosity coefficient of the shocked aluminum is determined to be about 2800±100 Pa·s. Comparing the experiment data with the numerical results of the viscoelastic-plastic model, we find that the aluminum is close to melting at 101 GPa.  相似文献   
5.
在单次冲击压缩实验中,借助新建的瞬态拉曼光谱技术实现了对液态硝基甲烷冲击拉曼光谱的原位观测,来探究该样品分子在冲击波作用下的结构稳定性.实验发现,在10.6 GPa的冲击加载下硝基甲烷的拉曼特征峰仅发生了蓝移和展宽,而在观测波段未发现化学变化产生的迹象.这一结果否定了文献所报道的硝基甲烷在6 GPa~8.5 GPa的单次冲击压力区间内发生了化学反应的推论,同时也证实了在10.6GPa的冲击压力下硝基甲烷分子在约为516 ns的压缩时间内能够保持其结构的稳定.  相似文献   
6.
A fiber-array probe is designed to measure the damping behavior of a small perturbed shock wave in an opaque substance, by which the effective viscosity of substance under the condition of high temperature and high pressure can be constrained according to the flyer-impact technique. It shows that the measurement precision of the shock arrival time by using this technique is within 2 ns. To easily compare with the results given by electrical pin technique, the newly developed method is used to investigate the effective viscosity of aluminum (Al). The shear viscosity coefficient of A1 is determined to be 1700 Pa.s at 71 GPa with a strain rate of 3.6× 10^6 s-1, which is in good agreement with the results of other methods. The advantage of the new technique over the electrical pin one is that it is applicable for studying the non-conductive substances.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号