首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
力学   1篇
物理学   1篇
  2003年   1篇
  2002年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Rotational echo double resonance (REDOR) of spin-12 nuclei is an extremely useful tool for the determination of distances in solids as well as of relative orientations of chemical shift and dipole tensors. We present the corresponding version for measuring the relative orientation of electric quadrupole and dipole tensors and demonstrate its applicability for non-bridging oxygens in phosphate glasses using 17O-[31P] REDOR NMR. The orientational information is found in the changes of the second-order quadrupole patterns as a function of the echo delay. Results and numeric simulations are presented for 17O-[31P] REDOR NMR of 17O-enriched sodium phosphate glasses. For non-bridging oxygens, the symmetric quadrupole tensor is found to be aligned along the phosphorus-oxygen bond. The distance between P and the non-bridging oxygen is calculated for two glasses of different compositions.  相似文献   
2.
Influence of Microbial Growth on Hydraulic Properties of Pore Networks   总被引:2,自引:0,他引:2  
From laboratory experiments it is known that bacterial biomass is able to influence the hydraulic properties of saturated porous media, an effect called bioclogging. To interpret the observations of these experiments and to predict possible bioclogging effects on the field scale it is necessary to use transport models, which are able to include bioclogging. For these models it is necessary to know the relation between the amount of biomass and the hydraulic conductivity of the porous medium. Usually these relations were determined using bundles of parallel pore channels and do not account for interconnections between the pores in more than one dimension. The present study uses two-dimensional pore network models to study the effects of bioclogging on the pore scale. Numerical simulations were done for two different scenarios of the growth of biomass in the pores. Scenario 1 assumes microbial growth in discrete colonies clogging particular pores completely. Scenario 2 assumes microbial growth as a biofilm growing on the wall of each pore. In both scenarios the hydraulic conductivity was reduced by at least two orders of magnitude, but for the colony scenario much less biomass was needed to get a maximal clogging effect and a better agreement with previously published experimental data could be found. For both scenarios it was shown that heterogeneous pore networks could be clogged with less biomass than more homogeneous ones.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号