首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
力学   9篇
数学   2篇
物理学   7篇
  2022年   2篇
  2021年   3篇
  2020年   5篇
  2015年   1篇
  2013年   3篇
  2010年   1篇
  2009年   2篇
  2002年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
Stochastic Configuration Network (SCN) has a powerful capability for regression and classification analysis. Traditionally, it is quite challenging to correctly determine an appropriate architecture for a neural network so that the trained model can achieve excellent performance for both learning and generalization. Compared with the known randomized learning algorithms for single hidden layer feed-forward neural networks, such as Randomized Radial Basis Function (RBF) Networks and Random Vector Functional-link (RVFL), the SCN randomly assigns the input weights and biases of the hidden nodes in a supervisory mechanism. Since the parameters in the hidden layers are randomly generated in uniform distribution, hypothetically, there is optimal randomness. Heavy-tailed distribution has shown optimal randomness in an unknown environment for finding some targets. Therefore, in this research, the authors used heavy-tailed distributions to randomly initialize weights and biases to see if the new SCN models can achieve better performance than the original SCN. Heavy-tailed distributions, such as Lévy distribution, Cauchy distribution, and Weibull distribution, have been used. Since some mixed distributions show heavy-tailed properties, the mixed Gaussian and Laplace distributions were also studied in this research work. Experimental results showed improved performance for SCN with heavy-tailed distributions. For the regression model, SCN-Lévy, SCN-Mixture, SCN-Cauchy, and SCN-Weibull used less hidden nodes to achieve similar performance with SCN. For the classification model, SCN-Mixture, SCN-Lévy, and SCN-Cauchy have higher test accuracy of 91.5%, 91.7% and 92.4%, respectively. Both are higher than the test accuracy of the original SCN.  相似文献   
2.
Fractional-order calculus is about the differentiation and integration of non-integer orders. Fractional calculus (FC) is based on fractional-order thinking (FOT) and has been shown to help us to understand complex systems better, improve the processing of complex signals, enhance the control of complex systems, increase the performance of optimization, and even extend the enabling of the potential for creativity. In this article, the authors discuss the fractional dynamics, FOT and rich fractional stochastic models. First, the use of fractional dynamics in big data analytics for quantifying big data variability stemming from the generation of complex systems is justified. Second, we show why fractional dynamics is needed in machine learning and optimal randomness when asking: “is there a more optimal way to optimize?”. Third, an optimal randomness case study for a stochastic configuration network (SCN) machine-learning method with heavy-tailed distributions is discussed. Finally, views on big data and (physics-informed) machine learning with fractional dynamics for future research are presented with concluding remarks.  相似文献   
3.
Feng  Tian  Guo  Lihong  Wu  Baowei  Chen  YangQuan 《Nonlinear dynamics》2020,102(4):2467-2478
Nonlinear Dynamics - In this paper, a class of switched fractional-order continuous-time systems with order $$0<\alpha <1$$ is investigated. First, an interesting property of...  相似文献   
4.
5.
Xu  Conghui  Yu  Yongguang  Chen  YangQuan  Lu  Zhenzhen 《Nonlinear dynamics》2020,101(3):1621-1634
Nonlinear Dynamics - In this paper, a generalized fractional-order SEIR model is proposed, denoted by SEIQRP model, which divided the population into susceptible, exposed, infectious, quarantined,...  相似文献   
6.
Yuan  Jie  Fei  Shumin  Chen  YangQuan 《Nonlinear dynamics》2020,99(4):2851-2866
Nonlinear Dynamics - Rate limit of system actuators is one of the major restrictions in the physical world. However, in classical and modern control design, the actuator rate limit has always been...  相似文献   
7.
This paper is concerned with the observer-based distributed event-triggered feedback control for semilinear time-fractional diffusion systems under the Robin boundary conditions. To this end, an extended Luenberger-type observer is presented to solve the limitations caused by the impossible availability of full-state information that is needed for feedback control in practical applications due to the difficulties of measuring. With this, we propose the distributed output feedback event-triggered controllers via backstepping technique under which the considered systems admit Mittag–Leffler stability. It is shown that the given event-triggered control strategy could significantly reduce the amount of transmitted control inputs while guaranteeing the desired system performance with the Zeno phenomenon being excluded. A numerical illustration is finally presented to illustrate our theoretical results.  相似文献   
8.
Chen  YangQuan  Moore  Kevin L. 《Nonlinear dynamics》2002,29(1-4):191-200
Delayed Linear Time-Invariant (LTI) fractional-order dynamic systems areconsidered. The analytical stability bound is obtained by using Lambertfunction. Two examples are presented to illustrate the obtainedanalytical results.  相似文献   
9.
A new method that enables easy and convenient discretization of partial differential equations with derivatives of arbitrary real order (so-called fractional derivatives) and delays is presented and illustrated on numerical solution of various types of fractional diffusion equation. The suggested method is the development of Podlubny’s matrix approach [I. Podlubny, Matrix approach to discrete fractional calculus, Fractional Calculus and Applied Analysis 3 (4) (2000) 359–386]. Four examples of numerical solution of fractional diffusion equation with various combinations of time-/space-fractional derivatives (integer/integer, fractional/integer, integer/fractional, and fractional/fractional) with respect to time and to the spatial variable are provided in order to illustrate how simple and general is the suggested approach. The fifth example illustrates that the method can be equally simply used for fractional differential equations with delays. A set of MATLAB routines for the implementation of the method as well as sample code used to solve the examples have been developed.  相似文献   
10.
A simplified fractional order PID (FOPID) controller is proposed by the suitable definition of the parameter relation with the optimized changeable coefficient. The number of the pending controller parameters is reduced, but all the proportional, integral, and derivative components are kept. The estimation model of the optimal relation coefficient between the controller parameters is established, according to which the optimal FOPID controller parameters can be calculated analytically. A case study is provided, focusing on the practical application of the simplified FOPID controller to a permanent magnet synchronous motor (PMSM) speed servo. The dynamic performance of the simplified FOPID control system is tested by motor speed control simulation and experiments. Comparisons are performed between the control systems using the proposed method and those using some other existing methods. According to the simulation and experimental results, the simplified FOPID control system achieves the optimal dynamic performance. Therefore, the validity of the proposed controller structure and tuning method is demonstrated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号