首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   1篇
化学   45篇
力学   6篇
数学   11篇
物理学   20篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   5篇
  2015年   3篇
  2014年   2篇
  2013年   10篇
  2012年   9篇
  2011年   7篇
  2010年   3篇
  2009年   4篇
  2008年   4篇
  2007年   2篇
  2006年   3篇
  2005年   3篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1990年   1篇
  1984年   1篇
  1983年   1篇
  1980年   4篇
  1978年   1篇
  1977年   2篇
  1971年   1篇
排序方式: 共有82条查询结果,搜索用时 93 毫秒
1.
Battal Gazi Yalcin 《哲学杂志》2016,96(21):2280-2299
The current study aimed to comprehensively investigate structural, electronic, optical and transport properties of quaternary semiconductor CuZn2AS4 (CZAS; A=Al, Ga and In) nanocrystals (NCs). Based on energy considerations, the stannite structure (I-42m; No. 121) is found to be more stable than the kesterite (I-4; No.82) and wurtzite (P63mc; No.186) type structures. By means of hybrid functional calculations, these nanocrystals have direct band gap of 0.81–1.71 eV with a high absorption coefficient of >104 cm?1, which are well-suited for use in solar energy-conversion applications. Some of the latest advances in applications of these nanocrystals in thermoelectric applications are also highlighted in the current study. It is observed that transport coefficients of these materials are found to be nearly direction independent and isotropic. All three samples are p-type conductors at room temperature. Especially, the Seebeck coefficient of CuZn2AlS4 is even larger than that of CuZn2GaS4 and CuZn2InS4 under the studied carrier concentration and temperature region. The maximum figure of merit (ZT) reaches 0.982 (0.977), 0.984 (0.974) and 0.53 (0.955) for p-type (n-type) CuZn2AlS4, CuZn2GaS4, and CuZn2InS4, respectively, at 300 K. The high Seebeck coefficients, high figure of merit and low thermal conductivities make these systems good candidates for high-efficiency thermoelectric conversion applications.  相似文献   
2.
In this study, C-terminal protonated dipeptide eliminations were reported for both b 5 and b 4 ions of side chain hydroxyl group (–OH) containing pentapeptides. The study utilized the model C-terminal amidated pentapeptides having sequences of XGGFL and AXVYI, where X represents serine (S), threonine (T), glutamic acid (E), aspartic acid (D), or tyrosine (Y) residue. Upon low-energy collision-induced dissociation (CID) of XGGFL (where X?=?S, T, E, D, and Y) model peptide series, the ions at m/z 279 and 223 were observed as common fragments in all b 5 and b 4 ion (except b 4 ion of YGGFL) mass spectra, respectively. By contrast, peptides, namely SMeGGFL-NH2 and EOMeGGFL-NH2, did not show either the ion at m/z 279 or the ion at m/z 223. It is shown that the side chain hydroxyl group is required for the possible mechanism to take place that furnishes the protonated dipeptide loss from b 5 and b 4 ions. In addition, the ions at m/z 295 and 281 were detected as common fragments in all b 5 and b 4 ion (except b 4 ion of AYVYI) mass spectra, respectively, for AXVYI model peptide series. The MS4 experiments exhibited that the fragment ions at m/z 279, 223, 295, and 281 entirely reflect the same fragmentation behavior of [M?+?H]+ ion generated from commercial dipeptides FL-OH, GF-OH, YI-OH, and VY-OH. These novel eliminations reported here for b 5 and b 4 ions can be useful in assigning the correct and reliable peptide sequences for high-throughput proteomic studies.
Figure
?  相似文献   
3.
The fragmentation reactions of the MH+ ions of Leu-enkephalin amide and a variety of heptapeptide amides have been studied in detail as a function of collision energy using a QqToF beam type mass spectrometer. The initial fragmentation of the protonated amides involves primarily formation of bn ions, including significant loss of NH3 from the MH+ ions. Further fragmentation of these bn ions occurs following macrocyclization/ring opening leading in many cases to bn ions with permuted sequences and, thus, to formation of non-direct sequence ions. The importance of these non-direct sequence ions increases markedly with increasing collision energy, making peptide sequence determination difficult, if not impossible, at higher collision energies.
Figure
?  相似文献   
4.
Journal of Radioanalytical and Nuclear Chemistry - Iron phosphate glasses with melting temperatures of?~?1300 °C were developed to immobilize spent nuclear fuels. The...  相似文献   
5.
Concentration of (222)Rn was determined in selected natural spring and tap water samples collected during spring and summer seasons from Kastamonu, Turkey. The aim of this work was to produce a map of the radon concentrations in water sources of the province and to determine any potential radiological risk for the local population. Radon measurements were performed by an AlphaGUARD radon gas analyser. The average radon concentrations were found to vary from 0.39±0.02 to 12.73±0.39?Bq?l(-1) for natural springs and from 0.36±0.04 to 9.29±0.45?Bq?l(-1) for tap water in spring, from 0.50±0.09 to 19.21±1.00?Bq?l(-1) for natural springs and from 0.31±0.03 to 13.14±0.38?Bq?l(-1) for tap water in summer. Furthermore, the results are compared with international recommendations and concentrations reported for other countries. Doses resulting from the consumption of these waters were calculated. The effective dose equivalents due to the intake of the (222)Rn present in these waters are expected to range from 0.93 to 32.54?μSv?y(-1) in summer and from 0.80 to 49.09?μSv?y(-1) in spring.  相似文献   
6.
In this study, the propagation of an initially plane wave in a linear isotropic nonhomogeneous viscoelastic medium, where the nonhomogeneity varies transversely to the direction of propagation, is investigated. For this purpose, first the propagation of waves in a linear isotropic viscoelastic medium of arbitrary inhomogeneity is studied by employing the notion of singular surfaces. The characteristic equation governing wave velocities, and the growth and decay equations describing the change of the strength of the discontinuity as the wave front moves are obtained.In the second part of this work, the propagation of initially plane waves is studied for three types of inhomogeneities by employing the findings established in the first part. The first kind of inhomogeneity considered is of axisymmetrical type where the wave propagation velocity depends on the radial coordinate only, increasing linearly up to a certain radial distance and remaining constant thereafter. The second kind is also axisymmetrical with a wave velocity distribution decreasing linearly till a given value of the radial coordinate. In the third one, the wave velocity is assumed to vary linearly over a given interval along a certain coordinate axis only, which is perpendicular to the direction of propagation, and remain constant outside. The ray and wave front analyses are carried out and the decay or growth of stress and velocity discontinuities are studied for each of the three cases.  相似文献   
7.
In this study, two-dimensional transient dynamic response of orthotropic plane layered media is investigated. The plane multilayered media consist of N different generally orthotropic, homogeneous and linearly elastic layers with different ply angles. In the generally orthotropic layer, representing a ply reinforced by unidirectional fibers with an arbitrary orientation angle, the principal material directions do not coincide with body coordinate axes. The solution is obtained by employing a numerical technique which combines the use of Fourier transform with the method of characteristics. The numerical results are displayed in curves denoting the variations of stress and displacement components with time at different locations. These curves clearly reveal, in wave profiles, the scattering effects caused by the reflections and refractions of waves at the boundaries and at the interfaces of the layers, and also the effects of anisotropy caused by fiber orientation angle. The curves properly predict the sharp variations in the response at the neighborhood of the wave fronts, which shows the power of the numerical technique employed in the study. By suitably adjusting the elastic constants, the results for multilayered media with transversely isotropic layers, or layers with cubic symmetry, or isotropic layers can easily be obtained from the general formulation. Furthermore, solutions for some special cases, including Lamb’s problem for an elastic half-space, are obtained and compared with the available solutions in the literature and very good agreement is found. Preliminary version presented at the Second International Congress on Mechatronics (MECH2K3), Graz, Austria, July 14-17, 2003.  相似文献   
8.
We propose subspace methods for three‐parameter eigenvalue problems. Such problems arise when separation of variables is applied to separable boundary value problems; a particular example is the Helmholtz equation in ellipsoidal and paraboloidal coordinates. While several subspace methods for two‐parameter eigenvalue problems exist, their extensions to a three‐parameter setting seem challenging. An inherent difficulty is that, while for two‐parameter eigenvalue problems, we can exploit a relation to Sylvester equations to obtain a fast Arnoldi‐type method, such a relation does not seem to exist when there are three or more parameters. Instead, we introduce a subspace iteration method with projections onto generalized Krylov subspaces that are constructed from scratch at every iteration using certain Ritz vectors as the initial vectors. Another possibility is a Jacobi–Davidson‐type method for three or more parameters, which we generalize from its two‐parameter counterpart. For both approaches, we introduce a selection criterion for deflation that is based on the angles between left and right eigenvectors. The Jacobi–Davidson approach is devised to locate eigenvalues close to a prescribed target; yet, it often also performs well when eigenvalues are sought based on the proximity of one of the components to a prescribed target. The subspace iteration method is devised specifically for the latter task. The proposed approaches are suitable especially for problems where the computation of several eigenvalues is required with high accuracy. MATLAB implementations of both methods have been made available in the package MultiParEig (see http://www.mathworks.com/matlabcentral/fileexchange/47844-multipareig ).  相似文献   
9.
By using a new technique proposed by the first author [1] approximate theories are developed for the dynamic response of viscoelastic plates and layered composites. The originality of the new technique lies in the fact that it permits the approximate theory to satisfy correctly the lateral boundary conditions of a plate, or the interface (continuity) conditions of a layered composite. This, in turn, enables the approximate theory to describe accurately the geometric dispersion of waves propagating in a plate or layered composite. The approximate equations of a single viscoelastic plate are first derived by making use of the new technique. To develop the approximate theory for viscoelastic layered composites made of two alternating layers it is noted that the approximate equations of a single plate already established also hold in each layer of the composite. The theory is completed by adding the continuity conditions to these equations and using a smoothing operation. The equations thus obtained constitute a continuum (homogeneous) model (CM) which simplifies the determination of the dynamic response of viscoelastic layered composites when the number of layers in the composite is large. The proposed approximate theories are open to improvement in the sense that their region of validity in the wave number-frequency plane can be enlarged as much as one wishes by increasing the orders of the theories and continuity conditions.  相似文献   
10.
With the object of developing refined dynamic theories for plates, shells, beams and composites, a new technique is proposed. This technique eliminates any inconsistency between the assumed deformation or temperature shape and lateral boundary or interface conditions. Accordingly, it improves the dispersive characteristics of waves propagating in any of these structural elements. In this study the new technique is applied to thermoelastic plates. It is found that the dispersion curves predicted by the refined approximate theory duplicate very closely those derived from the exact theory without introducing any matching coefficients into the approximate theory.  相似文献   
1 [2] [3] [4] [5] [6] [7] [8] [9] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号