首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学   1篇
力学   5篇
  2017年   2篇
  2014年   1篇
  2013年   1篇
  2010年   1篇
  2009年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
While metabolomics is increasingly used to investigate the food metabolome and identify new markers of food exposure, limited attention has been given to the validation of such markers. The main objectives of the present study were to (1) discover potential food exposure markers (PEMs) for a range of plant foods in a study setting with a mixed dietary background and (2) validate PEMs found in a previous meal study. Three-day weighed dietary records and 24-h urine samples were collected three times during a 6-month parallel intervention study from 107 subjects randomized to two distinct dietary patterns. An untargeted UPLC-qTOF-MS metabolomics analysis was performed on the urine samples, and all features detected underwent strict data analyses, including an iterative paired t test and sensitivity and specificity analyses for foods. A total of 22 unique PEMs were identified that covered 7 out of 40 investigated food groups (strawberry, cabbages, beetroot, walnut, citrus, green beans and chocolate). The PEMs reflected foods with a distinct composition rather than foods eaten more frequently or in larger amounts. We found that 23 % of the PEMs found in a previous meal study were also valid in the present intervention study. The study demonstrates that it is possible to discover and validate PEMs for several foods and food classes in an intervention study with a mixed dietary background, despite the large variability in such a dataset. Final validation of PEMs for intake of foods should be performed by quantitative analysis.
Figure
Examples of two urinary exposure markers for cabbage (left) and beetroot (right) found in the study from an untargeted LC‐MS metabolomics analysis of urine samples and self‐reported food intake data  相似文献   
2.
Le Maoût  N.  Thuillier  S.  Manach  P. Y. 《Experimental Mechanics》2010,50(7):1087-1097
The goal of this investigation is to gather experimental data on the hemming of concave or convex edge-curved surface samples, to study the influence of geometry and pre-strain on roll-in and load, as well as to assess the validity of the numerical simulation of the process. A specific experimental set-up was designed to study classical and roll-hemming processes. The samples were pre-strained through biaxial tests to obtain a geometry and strain history similar to that of industrial parts. Flanging, pre-hemming, and hemming loads were recorded and geometrical measurements were taken after each step for the 6000 series aluminum alloy samples. It is shown that sample geometry influences both the roll-in and the load, though no clear relationship could be established. Results also show that the roll-in from roll-hemming is lower than from classical hemming and that its evolution greatly differs between the two processes. Tests on the different cases studied also indicate that classical hemming is more likely to cause damage.  相似文献   
3.
The kinematic contribution to the hardening of ultra-thin metallic sheets characterized by monotonic and reversed simple shear tests is of high interest in the sheet metal forming industry, because of its influence on the accurate prediction of springback. However, ultra-thin sheets are very sensitive to buckling when submitted to shear stress because of the large gauge width to thickness ratio, the stress perturbations induced by the clamping and the alignment of sample, which thus limit the attainable strain levels using conventional simple shear devices. In this paper, a new simple shear test dedicated to ultra-thin metallic sheets is proposed through the development of a specific support. A transparent glass part enables the application of a normal tightening force to prevent the out-of-plane buckling of the sheets whilst also allowing full field strain measurements to be taken. Firstly, the capabilities of the device are shown by comparing the mechanical behavior in a simple shear test on an austenitic stainless steel with and without the support. A good reproducibility of the flow curves is observed with the support and large shear strains are reached without buckling. Secondly, the influence of friction due to the contact between the sample and the support is checked by finite elements simulations and shown to be negligible compared to the shearing force. Finally, monotonic and reversed shear tests on a pure copper sheet with a thickness of 0.1 mm were performed up to rupture without buckling, these were not previously conceivable on such a low thichness, and demonstrate the potential of the proposed device.  相似文献   
4.
The main objective of this study is to characterize the mechanical behaviour of an Al-Mg alloy in conditions close to those encountered during sheet forming processes, i.e. with strain path changes and at strain rates and temperatures in the range 1.2×10?3–1.2×10?1 s?1 and 25–200°C, respectively. The onset of jerky flow and the interaction of dynamic strain ageing with the work-hardening are investigated during reversed-loading in specific simple shear tests, which consist of loading up to various shear strain values followed by reloading in the opposite direction, combined with direct observations of the sample surface using a digital image correlation technique. Both strain path changes and temperature are clearly shown to influence the occurrence and onset of the Portevin-Le Chatelier (PLC) effect. Moreover, the Bauschinger effect observed in the material response shows that the PLC effect has a major influence on the kinematic contribution to work-hardening as well as its stagnation during the reloading stage, which could open up interesting lines of research to improve theoretical plasticity models for this family of aluminium alloys.  相似文献   
5.
This work deals with the characterization of the kinematic work-hardening of a bake-hardening steel. A shear test device has been designed and its use for the characterization of the work-hardening of sheet metals is described. Two main results are presented. Firstly, a local strain measurement, based on the following of three dots drawn on the gauge area, gives the evolution of the strain tensor eigenvalues during the test. It is shown, by comparing the theoretical kinematics of simple shear with a slightly perturbated one, that the strain state is close to the ideal one in the center of the gauge area. Secondly, reversal of the shear direction is performed after several prestrain and the evolution of the kinematic work-hardening with the equivalent plastic strain has been identified using an anisotropic elasto-viscoplastic model of Hill 1948 type. Isotropic and kinematic contributions of the work-hardening are also calculated from loading–unloading tensile tests and are compared to those obtained from the simple shear tests. The results show a discrepancy between both identification for the isotropic and the kinematic hardening. However, they are in agreement concerning the evolution of the global work-hardening.  相似文献   
6.
Local strain and temperature of an AA5754-O aluminum alloy sheet have been full-field measured during monotonous tensile tests carried out at room temperature. Sharp strain increases and temperature bursts which are locally generated by the Portevin-Le Chatelier phenomenon have been measured at the same point for two strain rates: V2?=?1.9?×?10?3?s?1 and V10?=?9.7?×?10?3?s?1. A relationship, which is based on the underlying physical mechanisms, has been established between the strain and the temperature and experimentally verified for the highest strain rate V10. The discrepancy between the theoretical and experimental results for the lowest strain rate V2 suggests that the localized plastic deformations do not follow an adiabatic transformation. Such a set-up seems to offer a direct and experimental method to check the adiabatic character of localized plastic deformations.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号