首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   1篇
化学   11篇
力学   1篇
物理学   1篇
  2023年   1篇
  2021年   4篇
  2020年   2篇
  2019年   1篇
  2015年   1篇
  2011年   2篇
  2000年   1篇
  1986年   1篇
排序方式: 共有13条查询结果,搜索用时 676 毫秒
1.
建立了采用差示扫描量热法对芝麻酚纯度标准物质的定值及不确定度评价的数学模型、有效检测技术和分析方法.采用差示扫描量热法测量芝麻酚样品纯度的实验条件为升温速率3.0 K/min,称样量3.4~4.7 mg,炉内气体为静态空气.对通过均匀性检验和长期稳定性考察的芝麻酚纯度标准物质进行定值和不确定度评价,同时采用高效液相色谱...  相似文献   
2.
超导纳米量子干涉器件是近年来发展起来的一种新型超导器件, 通过现代微纳加工技术将其超导环缩小到纳米尺寸, 构成高度灵敏的微观自旋探测器, 理论上可以达到测量单电子自旋的灵敏度. 同时, 高温超导由于具有较高的临界温度和上临界场也备受关注. 然而, 相比于低温超导量子干涉器件, 高温超导量子干涉器件的1/f 噪声更加显著, 这限制了其在低频下的应用. 本文基于双晶衬底技术, 通过聚焦离子束加工制备高温超导纳米量子干涉仪, 并对其在液氦和液氮温区下的电学性能、4.2 K 下的磁通噪声进行表征. 实验发现, 通过预先退火处理钛酸锶双晶衬底, 可以有效改善衬底表面的粗糙度, 进而优化高温超导纳米量子干涉仪的1/f 磁通噪声. 最终得到低频下(1 Hz)的磁通噪声灵敏度为4.9 μΦ0/Hz1/2 , 比未事先预处理的小一到两个数量级, 这对于推进高温超导纳米量子干涉器件在低频下的应用意义重大.  相似文献   
3.
Chirality at different levels is widely observed in nature, but the clue to connect it all together, and the way chirality transfers among different levels are still obscure. Herein, a l -/d -lysine-based self-assembly system was constructed, in which two-step chirality transfer among three different levels was observed in aqueous solution. The chirality originated from the point chirality of amino acid derivatives l -/d -PyLys hydrochloride, and was transferred to the planar conformational chirality of water-soluble pillar[5]arene pR-/pS-WP5. Then, with the aid of pR-/pS-WP5, nanoparticles were formed that exhibited L-/R-handed circularly polarized luminescence with a dissymmetry factor of up to ±0.001, arising from pyrene chiral excimers. This multilevel chirality transfer not only provides a perspective to trace potential clues, and to pursue certain ways by which the chirality transfers, but also offers a strategy to create controllable CPL emission in aqueous media.  相似文献   
4.
Peroxalate CL as an energy source to excite photosensitizers has attracted tremendous attention in photodynamic therapy (PDT). In this work, peroxyoxalate CPPO and hypocrellin B (HB)-based nanoparticles (CBNPs) for ultrasound (US)-enhanced self-exciting PDT were designed and prepared. CBNPs showed an excellent therapeutic effect against cancer cells with the assistance of US. This US-enhanced-chemiluminescence system avoids the dependence on external light and provides an example for inspiring more effective and precise strategies for cancer treatment.  相似文献   
5.
Two rhomboidal metallacycles based on metal-coordination-driven self-assembly are presented. Because metal-coordination interactions restrict the rotation of phenyl groups on tetraphenylethene units, these metallacycles were emissive both in solution and in solid state, and their aggregation-induced emission properties were well-retained. Moreover, the rhomboidal metallacyclic structures offer a platform for intermolecular packing beneficial for the formation of liquid crystalline phases. Therefore, although neither of building blocks shows mesogenic properties, both thermotropic and lyotropic (in DMF) mesophases were observed in one of metallacycles, indicating that mesophases could be induced by metal-coordination interactions. This study not only reveals the mechanism for the formation of cavity-cored liquid crystals, but also provides a convenient approach to preparing supramolecular luminescent liquid crystals, which will serve as good candidates for chemo sensors and liquid crystal displays.  相似文献   
6.
Two rhomboidal metallacycles based on metal‐coordination‐driven self‐assembly are presented. Because metal‐coordination interactions restrict the rotation of phenyl groups on tetraphenylethene units, these metallacycles were emissive both in solution and in solid state, and their aggregation‐induced emission properties were well‐retained. Moreover, the rhomboidal metallacyclic structures offer a platform for intermolecular packing beneficial for the formation of liquid crystalline phases. Therefore, although neither of building blocks shows mesogenic properties, both thermotropic and lyotropic (in DMF) mesophases were observed in one of metallacycles, indicating that mesophases could be induced by metal‐coordination interactions. This study not only reveals the mechanism for the formation of cavity‐cored liquid crystals, but also provides a convenient approach to preparing supramolecular luminescent liquid crystals, which will serve as good candidates for chemo sensors and liquid crystal displays.  相似文献   
7.
Hydrophobic photosensitizers greatly affect cell permeability and enrichment in tumors, but they cannot be used directly for clinical applications because they always aggregate in water, preventing their circulation in the blood and accumulation in tumor cells. As a result, amphiphilic photosensitizers are highly desirable. Although nanomaterial-based photosensitizers can solve water solubility, they have the disadvantages of complicated operation, poor reproducibility, low drug loading, and poor stability. In this work, an efficient synthesis strategy is proposed that converts small molecules into nanoparticles in 100 % aqueous solution by molecular assembly without the addition of any foreign species. Three photosensitizers with triphenylphosphine units and ethylene glycol chains of different lengths, TPP−PPh3, TPP−PPh3−2PEG and TPP−PPh3−4PEG, were synthesized to improve amphiphilicity. Of the three photosensitizers, TPP−PPh3−4PEG is the most efficient (singlet oxygen yield: 0.89) for tumor photodynamic therapy not only because of its definite constituent, but also because its amphiphilic structure allows it to self-assemble in water.  相似文献   
8.
Carbon dots (CDs), a kind of phototheranostic agent with the capability of simultaneous bioimaging and phototherapy [i.e., photodynamic therapy (PDT) or photothermal therapy (PTT)], have received considerable attention because of their remarkable properties, including flexibility for surface modification, high biocompatibility, low toxicity and photo‐induced activity for malignant tumor cells. Among numerous carbon sources, it has been found that natural biomass are good candidates for the preparation of CD phototheranostic agents. In this study, pheophytin, a type of Mg‐free chlorophyll derivative and also a natural product with low toxicity, was used as a raw carbon source for the synthesis of CDs by using a microwave method. The obtained hydrophobic CDs exhibited a maximum near‐infrared (NIR) emission peak at approximately 680 nm, and high singlet oxygen (1O2) generation with a quantum yield of 0.62. The self‐assembled CDs from the as‐prepared CDs with DSPE‐mPEG2000 retained efficient 1O2 generation. The obtained carbon dot assembly was not only an efficient fluorescence (FL) imaging agent but also a smart PDT agent. Our studies indicated that the obtained hydrophilic CD assembly holds great potential as a new phototheranostic agent for cancer therapy. This work provides a new route for synthesis of CDs and proposes a readily available candidate for tumor treatment.  相似文献   
9.
Chen  Yifu  Zhang  Haohui  Chen  Jiehao  Kang  Guozheng  Hu  Yuhang 《Acta Mechanica Sinica》2021,37(5):748-756

A shape-memory double network hydrogel consists of two polymer networks: a chemically crosslinked primary network that is responsible for the permanent shape and a physically crosslinked secondary network that is used to fix the temporary shapes. The formation/melting transition of the secondary network serves as an effective mechanism for the double network hydrogel's shape-memory effect. When the crosslinks in the secondary network are dissociated by applying an external stimulus, only the primary network is left to support the load. When the secondary network is re-formed by removing the stimulus, both the primary and secondary networks support the load. In the past, models have been developed for the constitutive behaviors of double network hydrogels, but the model of shape-memory double network hydrogels is still lacking. This work aims to build a constitutive model for the polyacrylamide-gelatin double network shape-memory hydrogel developed in our previous work. The model is first calibrated by experimental data of the double network shape-memory hydrogel under uniaxial loading and then employed to predict the shape-fixing performance of the hydrogel. The model is also implemented into a three-dimension finite element code and utilized to simulate the shape-memory behavior of the double network hydrogel with inhomogeneous deformations related to applications.

Graphic abstract

A shape-memory double network hydrogel consists of a chemically crosslinked primary network and a physically crosslinked secondary network. The formation/melting transition of the secondary network serves as an effective mechanism for the shape-memory effect of the double network hydrogel. This work built a constitutive model for the polyacrylamide-and-gelatin double network shape-memory hydrogel. The model was first calibrated by experimental data and then employed to predict the shape-fixing performance of the hydrogel. The model was also implemented into a three-dimension finite element code and utilized to simulate the shape-memory behavior of double network hydrogel in complex geometries.

  相似文献   
10.
Since the widespread plantation of oranges and the rapid development of the orange juice processing industry, orange peel has been one of the main wastes in today's food industry. Orange peel is rich in high value-added compounds. Recycling of these substances can reduce the environmental pollution and resource waste effectively. It can also bring quantities of products with economic and social value. To help readers deepen their understanding of orange peel further in reading, in this review paper, we introduce the composition, properties, usage and future directions of the essential oil, pectin, pigment, hesperidin and dietary fiber in orange peel.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号