首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   251篇
  免费   26篇
  国内免费   7篇
化学   156篇
力学   7篇
数学   30篇
物理学   91篇
  2023年   2篇
  2022年   4篇
  2021年   4篇
  2020年   22篇
  2019年   9篇
  2018年   18篇
  2017年   11篇
  2016年   16篇
  2015年   10篇
  2014年   15篇
  2013年   41篇
  2012年   22篇
  2011年   22篇
  2010年   16篇
  2009年   12篇
  2008年   15篇
  2007年   9篇
  2006年   11篇
  2005年   10篇
  2004年   2篇
  2003年   2篇
  2002年   4篇
  2001年   2篇
  1999年   1篇
  1998年   1篇
  1996年   2篇
  1988年   1篇
排序方式: 共有284条查询结果,搜索用时 16 毫秒
1.
2.
A mathematical method is presented for solving the Schr?dinger equation for a system of identical body forces. The N-body forces are more easily introduced and treated within the hyperspherical harmonics. The problem of the N-body potential has been used at the level of both classical and quantum mechanics. The hypercentral interacting potential is assumed to depend on the hyperradius x = (ξ12 + ξ22 + ⋯ + ξN−12)1/2 only, where ξ12,…,ξN−1 are Jacobi relative coordinates which are functions of N-particle relative positions r12,r23,…,rN1. The problem of the harmonic oscillator and the Coulomb-type potential has been widely studied in different contexts. Using the N-body potential V(x) = ax2 + bx − (c/x) as an example, and assuming an ansatz for the eigenfunction, an exact analytical solution of the Schr?dinger equation for an N-body system in three dimensions is obtained. This method is also applicable to some other types of potentials for N-identical interacting particles.  相似文献   
3.
Summary.  N,N-Dimethylhydrazones of ketones and aldehydes undergo facile cleavage to the corresponding carbonyl compounds upon exposure to microwaves in water containing a catalytic amount of PdCl2–SnCl2 in high yields. Corresponding authors. E-mail: rahman@umz.ac.ir Received December 27, 2001. Accepted (revised) February 6, 2002  相似文献   
4.
An efficient method for the enantioselective 1,4-conjugate addition of amines to α,β-unsaturated esters containing an inexpensive chiral auxiliary, such as (S)-2-methyl-1-butanol and fenchyl alcohol, in solvent-free conditions mediated by solid lithium perchlorate is reported. Over 12 examples of the products are generated in excellent yields, accompanied by moderate enantioselectivity. The concentrated solution of LiClO4 in a diethyl ether system works well for the enantioselective 1,4-addition of organolithium compounds to α,β-unsaturated amides without any side reactions.  相似文献   
5.
A selective and sensitive method for the determination of cadmium and zinc is presented. The method is based on the adsorptive accumulation of the complexes of Cd(II) and Zn(II) ions with 4-amiono-5-methyl-2.4-dihydro-3H-1,2,4-triazol-3-tion (MMTT) onto hanging mercury drop electrode (HMDE), followed by the reduction of the adsorbed species using a voltammetric scan using differential pulse modulation. The ligand concentration, pH, potential and time of accumulation, scan rate, and pulse height were optimized. Under the optimized conditions, a linear calibration curve was obtained for the concentration of Cd(II) and Zn(II) in the range of 5–450 and 5–850 ng/mL, respectively, with a detection limit of 1.7 ng/mL Cd(II) and 1.3 ng/mL Zn(II). The ability of the method was evaluated by analysis of cadmium and zinc in water and alloy samples The text was submitted by the authors in English.  相似文献   
6.
Electron-rich aromatic compounds react with formaldehyde and a secondary amine under solvent-free condition, in the presence of acidic alumina in a commercial microwave oven or at room temperature to produce aminomethylated products in good to excellent yields.  相似文献   
7.
8.
9.

Many reports exist in the literature about the application of 1H and 13C‐NMR techniques to analyze the copolymer structure and composition and also determination of reactivity ratios. In this work, on‐line 1H‐NMR spectroscopy has been applied to identify reactivity ratios of itaconic acid and acrylonitrile in the solution phase (DMSO as the solvent) and in the presence of AIBN as the radical initiator. All the peaks corresponding to the existing protons were assigned quietly. Therefore, the kinetics of the copolymerization reaction was investigated by studying the variation of integral of two characteristic peaks regarding each monomer. The obtained data were used to find the reactivity ratios of acrylonitrile and itaconic acid by linear least‐squares methods such as Finemann‐Ross, inverted Finemann‐Ross, Mayo‐Lewis, Kelen‐Tudos, extended Kelen‐Tudos and Mao‐Huglin. In addition, a non‐linear least‐square method (Tidwell‐ Mortimer) was used at low conversions. Extended Kelen‐ Tudos and Mao‐Huglin were applied to determine reactivity ratio values at high conversions as well.  相似文献   
10.
We report on the synthesis of polymeric nanoparticles (PNPs) containing a tetrakis(3-hydroxyphenyl)porphyrin, and their use for the separation of mercury(II) ion. The PNPs were prepared by bulk polymerization from methacrylic acid (the monomer), ethyleneglycol dimethacrylate (the cross-linker), 2,2′-azobisisobutyronitrile (the radical initiator) and the mercury(II) complex of 5,10,15,20-tetrakis(3-hydroxyphenyl)-porphyrin. The Hg(II) ion was then removed by treatment with dilute hydrochloric acid. The PNPs were characterized by colorimetry, FT-IR spectroscopy, and scanning electron microscopy. The material is capable of binding Hg(II) from analyte samples. Bound Hg(II) ions can be eluted with dilute nitric acid and then quantified by cold vapor AAS. The extraction efficiency, the effects of pH, preconcentration and leaching times, sample volume, and of the nature, concentration and volume of eluent were investigated. The maximum adsorption capacity of the PNPs is 249 mg g?1, the relative standard deviation of the AAS assay is 2.2 %, and the limit of detection (3σ) is 8 ng.L?1. The nanoparticles exhibit excellent selectivity for Hg(II) ion over other metal ions and were successfully applied to the selective extraction and determination of Hg(II) ion in spiked water samples.
Figure
Schematic presentation of leaching process of mercury(II) ion from the prepared IIP  相似文献   
1 [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号