首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   0篇
化学   55篇
力学   23篇
数学   11篇
物理学   9篇
  2022年   1篇
  2021年   2篇
  2018年   1篇
  2017年   3篇
  2016年   1篇
  2013年   3篇
  2012年   10篇
  2011年   7篇
  2009年   2篇
  2008年   7篇
  2007年   6篇
  2006年   8篇
  2005年   3篇
  2004年   4篇
  2003年   3篇
  2002年   10篇
  2001年   11篇
  2000年   6篇
  1999年   1篇
  1998年   1篇
  1996年   3篇
  1995年   1篇
  1992年   1篇
  1986年   1篇
  1982年   1篇
  1974年   1篇
排序方式: 共有98条查询结果,搜索用时 968 毫秒
1.
Anionic phosphodiester surfactants, possessing either two fluorinated chains (F/F) or one hydrocarbon chain and one fluorinated chain (H/F), were synthesized and evaluated for solubility and self-assembly in liquid and supercritical carbon dioxide. Several surfactants, of both F/F and H/F types and having varied counterions, were found to be capable of solubilizing water-in-CO2 (W/C), via the formation of microemulsions, expanding upon the family of phosphate fluorosurfactants already found to stabilize W/C microemulsions. Small-angle neutron scatteringwas used to directly characterize the microemulsion particles at varied temperatures, pressures, and water loadings, revealing behavior consistent with previous results on W/C microemulsions.  相似文献   
2.
The thermal decomposition of the free-radical initiator bis(perfluoro-2-N-propoxyprionyl) peroxide (BPPP) was studied in dense carbon dioxide and a series of fluorinated solvents. For the fluorinated solvents, the observed first-order decomposition rate constants, k(obs), increased with decreasing solvent viscosity, suggesting a single-bond decomposition mechanism. The k(obs) values are comparatively larger in dense carbon dioxide and similar to the "zero-viscosity" rate constants extrapolated from the decomposition kinetics in the fluorinated solvents. The decomposition activation parameters demonstrate a compensation behavior of the activation enthalpy with the activation entropy upon change in solvent viscosity. Comparison of the change in activation parameter values upon change in solvent viscosity for BPPP with two additional initiators, acetyl peroxide (AP) and trifluoroacetyl peroxide (TFAP), further suggests that carbon dioxide exerts a very minimal influence on the decomposition mechanism of these initiators through solvent-cage effects.  相似文献   
3.
Step-scan FTIR time-resolved spectroscopy (S2FTIR TRS) in acetonitrile-d3 has been used to probe the acceptor ligand in metal-to-ligand charge transfer (MLCT) excited states of amide-substituted polypyridyl complexes of RuII and in analogues appended to polystyrene. On the basis of ground-to-excited state shifts in v(C = O) of -31 cm-1 for the amide group in [RuII(bpy)2(bpyCONHEt')]2+ (bpyCONHEt' = 4'-methyl-2,2'-bipyridine-4-carboxamide-Et'; Et' = -CH2CH2BzCH2CH3) (1) and in the derivatized polystyrene abbreviated [PS-[CH2-CH2NHCObpy-RuII(bpy)2]20]40+ (3), the excited-state dipole is directed toward the amide-containing pyridyl group in the polymer side chain. Smaller shifts in v(C = O) of -17 cm-1 in [RuII(4,4'-(CONEt2)2bpy)2-(bpyCONHEt')]2+ (2) and in the derivatized polystyrene abbreviated [PS-[CH2CH2NHCObpy-RuII(4,4'-(CONEt2)2bpy)2]20]40+ (4) indicate that the excited-state dipole is directed toward one of the diamide bpy ligands. The nearly identical results for 1 and 3 and for 2 and 4 show that the molecular and electronic structures of the monomer excited states are largely retained in the polymer samples. These conclusions about dipole orientation in the polymers are potentially of importance in understanding intrastrand energy transfer dynamics. The excited-state dipole in 3 is oriented in the direction of the covalent link to the polymer backbone, and toward nearest neighbors. In 4, it is oriented away from the backbone.  相似文献   
4.
Anionic phosphate fluorosurfactants were shown to self-assemble into water-in-carbon dioxide microemulsions. The surfactants, having either two fluorinated chains or one fluorinated chain and one hydrocarbon chain, facilitated significant water uptake in CO2. Small angle neutron scattering (SANS) measurements of surfactant/water/CO2 solutions confirmed the presence of nanometer-scale aggregates, indicative of microemulsion formation.  相似文献   
5.
Particle replication in nonwetting templates (PRINT) is a continuous, roll‐to‐roll, high‐resolution molding technology which allows the design and synthesis of precisely defined micro‐ and nanoparticles. This technology adapts the lithographic techniques from the microelectronics industry and marries these with the roll‐to‐roll processes from the photographic film industry to enable researchers to have unprecedented control over particle size, shape, chemical composition, cargo, modulus, and surface properties. In addition, PRINT is a GMP‐compliant (GMP=good manufacturing practice) platform amenable for particle fabrication on a large scale. Herein, we describe some of our most recent work involving the PRINT technology for application in the biomedical and material sciences.  相似文献   
6.
7.
We study two variational models recently proposed in the literature to describe the mechanical behaviour of nematic elastomers either in the fully nonlinear regime or in the framework of a geometrically linear theory. We show that, in the small strain limit, the energy functional of the first one Γ-converges to the relaxation of the second one, a functional for which an explicit representation formula is available.  相似文献   
8.
We prove the existence of energy‐minimizing configurations for a two‐dimensional, variational model of magnetoelastic materials capable of large deformations. The model is based on an energy functional which is the sum of the nonlocal self‐energy (the energy stored in the magnetic field generated by the body, and permeating the whole ambient space) and of the local anisotropy energy, which is not weakly lower semicontinuous. A further feature of the model is the presence of a non‐convex constraint on one of the unknowns, the magnetization, which is a unit vector field. (Accepted November 20, 1997)  相似文献   
9.
We derive an optimal scaling law for the energy of thin elastic films under isotropic compression, starting from three-dimensional nonlinear elasticity. As a consequence we show that any deformation with optimal energy scaling must exhibit fine-scale oscillations along the boundary, which coarsen in the interior. This agrees with experimental observations of folds which refine as they approach the boundary. We show that both for three-dimensional elasticity and for the geometrically nonlinear Föppl-von Kármán plate theory the energy of a compressed film scales quadratically in the film thickness. This is intermediate between the linear scaling of membrane theories which describe film stretching, and the cubic scaling of bending theories which describe unstretched plates, and indicates that the regime we are probing is characterized by the interplay of stretching and bending energies. Blistering of compressed thin films has previously been analyzed using the Föppl-von Kármán theory of plates linearized in the in-plane displacements, or with the scalar eikonal functional where in-plane displacements are completely neglected. The predictions of the linearized plate theory agree with our result, but the scalar approximation yields a different scaling.  相似文献   
10.
A simple algorithm to calculate the maximum torsional load for a cylindrical shaft is presented. The algorithm is based on the notion of viscosity solutions to the eikonal equation, and is not restricted to simply-connected cross-sections. Applications to other, related problems, such as ferromagnetic thin films, and elastic buckling of thin film blisters are also discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号