首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   173篇
  免费   8篇
  国内免费   3篇
化学   128篇
晶体学   1篇
力学   16篇
数学   7篇
物理学   32篇
  2023年   3篇
  2022年   3篇
  2021年   10篇
  2020年   17篇
  2019年   10篇
  2018年   13篇
  2017年   13篇
  2016年   9篇
  2015年   12篇
  2014年   10篇
  2013年   14篇
  2012年   22篇
  2011年   15篇
  2010年   9篇
  2009年   4篇
  2008年   5篇
  2006年   1篇
  2005年   2篇
  2003年   1篇
  2002年   3篇
  2000年   1篇
  1999年   1篇
  1996年   2篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1987年   1篇
排序方式: 共有184条查询结果,搜索用时 375 毫秒
1.
Several planar waveguides have been fabricated. The waveguides have been polished for determination of their refractiveindex profiles (RIP) by wedge method. The RIP determined by inserting the sample in a Mach-Zehnder interferometer andapplying fringe analysis methods.  相似文献   
2.
In every aseptic filling application, the sterile transfer of goods into the aseptic area is a challenge, and there are many different ways to do it.

With isolator technology a higher sterility assurance level (SAL) is achieved. This SAL is only as good as the weakest segment in the chain of manufacturing. The transfer of goods into and out of the isolator is one of these critical segments.

Today different techniques, some already well established, others still very new, are available on the market like: dry heat tunnel, autoclave, pulsed light, rapid transfer systems (RTP), H2O2 tunnel, UV light, etc. all these systems are either not applicable for continuous transfer, only good for heat-compatible materials like glass, or do not guarantee a 6 log spore reduction.

E-Beam opens new perspectives in this field. With E-beam technology it is possible to transfer heat-sensitive (plastic), pre-sterilised materials at high speed, continuously into an aseptic area.

E-Beam unifies three different technologies, that result in a very efficient and high-speed decontamination machine designed for the pharmaceutical industry. First, there is the electron beam that decontaminates the goods and an accurate shielding that protects the surrounding from this beam. Second, there is the conveyor system that guarantees the output and the correct exposure time underneath the beam. And third, there is the isolator interface to provide correct differential pressure and clean air inside the tunnel as well as the decontamination of the tunnel with H2O2 prior to production.

The E-beam is a low-energy electron beam, capable of decontaminating any kind of surface. It penetrates only a few micrometers into the material and therefore does not deform the packaging media.

Currently, machines are being built to transfer pre-sterilised syringes, packed in plastic tubs with a Tyvek cover into an aseptic filling isolator with the following data: decontamination efficiency of 106 (6 log spore reduction), decontamination speed of 6 tubs (600 syringes) per minute.

This is just one of many applications for this new technology.  相似文献   

3.
Ciprofloxacin is used in the treatment of bacterial infections. Because ciprofloxacin is not effectively degraded by biological processes, advanced oxidation processes such as photocatalytic ozonation are applied to remove this antibiotic from wastewater. The aim of this study was to investigate photocatalytic ozonation for the removal of ciprofloxacin from aquatic environments and optimization of the effective parameters of the process. For this purpose, ZnO nanoparticles were synthesized using the thermal method and immobilized on the surface of stones. The structural properties of the nanoparticles were determined by XRD, TEM, Photoluminescence (PL) and SEM. Experiments were carried out in a Plexiglas reactor supported with the continuous injection of ozone. The effective parameters for removal efficiency were reaction time, initial concentration of ciprofloxacin, pH, photocatalyst concentration and reaction kinetics. The highest ciprofloxacin removal efficiency occurred at the following optimal conditions: pH of 7, reaction time of 30?min, photocatalyst concentration of 3?g/L and initial ciprofloxacin concentration of 10?mg/L. Removal efficiency of 96% was obtained under these conditions. Linear kinetic models showed that the process followed pseudo-first order and Langmuir-Hinshelwood kinetics. This process had a high removal efficiency and suitable for removal of ciprofloxacin from aquatic environments.GRAPHICAL ABSTRACT  相似文献   
4.
5.
6.
7.
A palladium–fibroin complex (Pd/Fib.) was prepared by the addition of sonicated fibroin fiber in water to palladium acetate solution. Pd (OAc)2 was absorbed by fibroin and reduced with NaBH4 at room temperature to the Pd(0) nanoparticles. Powder‐X‐ray diffraction, scanning electron microscopy–energy‐dispersive X‐ray spectroscopy, Fourier transform‐infrared, CHN elemental analysis and inductively coupled plasma‐atomic emission spectroscopy were carried out to characterize the Pd/Fib. catalyst. Catalytic activity of this finely dispersed palladium was examined in the Heck coupling reaction. The catalytic coupling of aryl halides (‐Cl, ‐Br, ‐I) and olefins led to the formation of the corresponding coupled products in moderate to high yields under air atmosphere. A variety of substrates, including electron‐rich and electron‐poor aryl halides, were converted smoothly to the targeted products in simple procedure. Heterogeneous supported Pd catalyst can be recycled and reused several times.  相似文献   
8.
In the past years there has been a great interest in self-doped TiO2 nanotubes (blue TiO2 nanotubes) compared to undoped ones owing to their high carrier density and conductivity. In this study, blue TiO2 nanotubes are investigated as photoanode materials for photoelectrochemical water splitting. Blue TiO2 nanotubes were fabricated with enhanced photoresponse behavior through electrochemical cathodic polarization on undoped and annealed TiO2 nanotubes. The annealing temperature of undoped TiO2 nanotubes was tuned before cathodic polarization, revealing that annealing at 500 °C improved the photoresponse of the nanotubes significantly. Further optimization of the blue TiO2 nanotubes was achieved by adjusting the cathodic polarization parameters. Blue TiO2 nanotubes obtained at the potential of –1.4 V (vs. SCE) with a duration of 10 min exhibited twice more photocurrent response (0.39 mA cm-2) compared to the undoped TiO2 nanotube arrays (0.19 mA cm-2). Oxygen vacancies formed through the cathodic polarization decreased charge recombination and enhanced charge transfer rate; therefore, a high photoelectrochemical activity under visible light irradiation could be achieved.  相似文献   
9.
10.
In this work, an electrochemical DNA biosensor, based on a dual signal amplified strategy by employing a polyaniline film and gold nanoparticles as a sensor platform and enzyme‐linked as a label, for sensitive detection is presented. Firstly, polyaniline film and gold nanoparticles were progressively grown on graphite screen‐printed electrode surface via electropolymerization and electrochemical deposition, respectively. The sensor was characterized by scanning electron microscopy (SEM), cyclic voltammetry and impedance measurements. The polyaniline‐gold nanocomposite modified electrodes were firstly modified with a mixed monolayer of a 17‐mer thiol‐tethered DNA probe and a spacer thiol, 6‐mercapto‐1‐hexanol (MCH). An enzyme‐amplified detection scheme, based on the coupling of a streptavidin‐alkaline phosphatase conjugate and biotinylated target sequences was then applied. The enzyme catalyzed the hydrolysis of the electroinactive α‐naphthyl phosphate to α‐naphthol; this product is electroactive and has been detected by means of differential pulse voltammetry. In this way, the sensor coupled the unique electrical properties of polyaniline and gold nanoparticles (high surface area, fast heterogeneous electron transfer, chemical stability, and ease of miniaturisation) and enzymatic amplification. A linear response was obtained over a concentration range (0.2–10 nM). A detection limit of 0.1 nM was achieved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号