首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学   2篇
数学   1篇
  2008年   2篇
  1997年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
The interaction between oxidized (ubiquinone-10) and reduced (ubiquinol-10) coenzyme Q 10 with dimyristoylphosphatidylcholine has been examined by differential scanning microcalorimetry, X-ray diffraction, infrared spectroscopy, and (2)H NMR. Microcalorimetry experiments showed that ubiquinol-10 perturbed considerably more the phase transition of the phospholipids than ubiquinone-10, both forms giving rise to a shoulder of the main transition peak at lower temperatures. Small angle X-ray diffraction showed an increase in d-spacing suggesting a thicker membrane in the presence of both ubiquinone-10 and ubiquinol-10, below the phase transition and a remarkable broadening of the peaks indicating a loss of the repetitive pattern of the lipid multilamellar vesicles. Infrared spectroscopy showed an increase in wavenumbers of the maximum of the CH 2 stretching vibration at temperatures below the phase transition, in the presence of ubiquinol-10, indicating an increase in the proportion of gauche isomers in the gel phase, whereas this effect was smaller for ubiquinone-10. A very small effect was observed at temperatures above the phase transition. (2)H NMR spectroscopy of perdeuterated DMPC showed only modest changes in the spectra of the phospholipids occasioned by the presence of coenzyme Q 10. These small changes were reflected, in the presence of ubiquinol-10, by a decrease in resolution indicating that the interaction between coenzyme Q and phospholipids changed the motion of the lipids. The change was also visible in the first spectral moment (M1), which is related with membrane order, which was slightly decreased at temperatures below the phase transition especially with ubiquinol-10. A slight decrease in M 1 values was also observed above the phase transition but only for ubiquinol-10. These results can be interpreted to indicate that most ubiquinone-10 molecules are localized in the center of the bilayer, but a considerable proportion of ubiquinol-10 molecules may span the bilayer interacting more extensively with the phospholipid acyl chains.  相似文献   
2.
O. Kegel, in 1962, introduced the concept of p-subnormal subgroups of a finite group as the subgroups whose intersections with all Sylow p-subgroups of the group are Sylow p-subgroups of the subgroup. The set of p-subnormal subgroup of a finite group is not a lattice in general. In this paper, the class of all finite groups in which all p-subnormal subgroups from a lattice is determined. This is the class of all finite p-soluble groups whose p-length and p′-length, both, are less or equal to 1. The join-semilattice case and the meet-semilattice case are analyzed separately. The authors are supported by Proyecto PB 94-1048 of DGICYT, Ministerio de Educación y Ciencia of Spain.  相似文献   
3.
The effect of edelfosine (1- O-octadecyl-2- O-methyl-rac-glycero-3-phosphocholine or ET-18-OCH3) on model membranes containing 1-palmitoyl-2-oleoyl- sn-glycero-3-phosphocholine/sphingomyelin/cholesterol (POPC/SM/cholesterol) was studied by several physical techniques. The sample POPC/SM (1:1 molar ratio) showed a broad phase transition as seen by DSC, X-ray diffraction, and 2H NMR. The addition of edelfosine to this sample produced isotropic structures at temperatures above the phase transition, as seen by 2H NMR and by 31P NMR. When cholesterol was added to give a POPC/SM/cholesterol (at a molar ratio 1:1:1), no transition was observed by DSC nor X-ray diffraction, and 2H NMR indicated the presence of a liquid ordered phase. The addition of 10 mol % edelfosine increased the thickness of the membrane as seen by X-ray diffraction and led to bigger differences in the values of the molecular order of the membrane detected at high and low temperatures, as detected through the M 1 first spectral moment from 2H NMR. These differences were even greater when 20 mol % edelfosine was added, and a transition was now clearly visible by DSC. In addition, a gel phase was clearly indicated by X-ray diffraction at low temperatures. The same technique pointed to greater membrane thickness in this mixture and to the appearance of a second membrane structure, indicating the formation of two separated phases in the presence of edelfosine. All of these data strongly suggest that edelfosine associating with cholesterol alter the phase status present in a POPC/SM/cholesterol (1:1:1 molar ratio) mixture, which is reputed to be a model of a raft structure. However, cell experiments showed that edelfosine colocalizes in vivo with rafts and that it may reach concentrations higher than 20 mol % of total lipid, indicating that the concentrations used in the biophysical experiments were within what can be expected in a cell membrane. The conclusion is that molecular ways of action of edelfosine in cells may involve the modification of the structure of rafts.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号