首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
化学   13篇
物理学   7篇
  2016年   1篇
  2013年   1篇
  2010年   1篇
  2009年   3篇
  2008年   4篇
  2007年   2篇
  2005年   1篇
  1999年   3篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
1.
2.
3.
The specific toxicity of trace metals and compounds largely depends on their bioavailability in different organs or compartments of the organism considered. Imaging mass spectrometry (IMS) using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) with a spatial resolution in the 100 microm range was developed and employed to study heavy metal distribution in brain tissues for toxicological screening. Rat brain post-mortem tissues were stained in an aqueous solution of either uranium or neodymium (metal concentration 100 microg g(-1)) for 3 h. The incubation of heavy metal in thin slices of brain tissue is followed by an imaging mass spectrometric LA-ICP-MS technique. Stained rat brain tissue (thickness 30 microm) were scanned with a focused laser beam (wavelength 266 nm, diameter of laser crater 100 microm and laser power density 3 x 10(9) W cm(-2)). The ion intensities of (235)U(+), (238)U(+), (145)Nd(+) and (146)Nd(+) were measured by LA-ICP-MS within the ablated area. For quantification purposes, matrix-matched laboratory standards were prepared by dosing each analyte to the pieces of homogenized brain tissue. Imaging LA-ICP-MS allows structures of interest to be identified and the relevant dose range to be estimated. Copyright (c) 2008 John Wiley & Sons, Ltd.  相似文献   
4.
In this article we compare the classical monopole mass filter of von Zahn and the monopole mass filter with a hyperbolic V-shaped electrode. The experimental results and those of computer simulation for both mass spectrometers are presented. We show that the replacement of a conventional 90 degrees V-shaped electrode by an electrode with a hyperbolic profile substantially improves the peak shape of any given mass, and increases the mass resolution by a factor of 3-4 and the abundance sensitivity by a factor of 100. The potential of high analytical performance combined with electroforming techniques for electrode manufacture indicate future practical uses of such instruments. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   
5.
An analytical mass spectrometric method for the elemental analysis of nano-bioelectronic devices involved in bioengineering research was developed and applied for measurements of selected metals (Au, Ti, Pt, Cr, etc. ) on interdigitated electrode array chips (IDA-chip). An imaging laser ablation inductively coupled plasma mass spectrometric (LA-ICP-MS) procedure was used to map the elements of interest on the surface of the analyzed sample. The obtained images of metals were in a good agreement and corresponded to the micro- and nanofabricated metal electrode pattern. For the analysis at nanometer resolution scale a NF-LA-ICP-MS (NF-near-field) procedure was applied, which utilize thin Ag needle to enhance laser beam energy and improve spatial resolution of the method. The results show a ∼100× enhancement of analyte signal, when the needle was positioned in the “near-field region” to the sample surface and the laser shot was performed. In addition, mass spectrometric studies of reproducibly for five separated NF-LA shots in different places of analyzed sample yielded an RSD of the measurement of 16%.  相似文献   
6.
7.
8.
Platinum complexes are used for the treatment of several types of cancer. High platinum concentrations in the target tissue and low concentrations in dose-limiting tissue structures such as renal tubules are desirable to assure selective toxicity. Microlocal analysis of platinum distribution in tissue sections may thus contribute to the optimization of platinum therapy. Scanning laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used to produce images of element distribution in 14-μm thin sections of kidney tissue from a mouse treated with cis-platin 60 min prior to victimization. The sample surface was scanned (raster area 300 mm2) with a focused laser beam (wavelength 266 nm, diameter of laser crater 50 μm, inter line distance 50 μm and laser power density 3 × 109 W cm−2) in a cooled laser ablation chamber (about −15 °C) developed for these measurements. The laser ablation system was coupled to a double-focusing sector field ICP-MS. Ion intensities of 63Cu+, 64Zn+, and 196Pt+ were measured within the tissue by LA-ICP-MS. Matrix-matched laboratory standards served for calibration of analytical data. The mass spectrometric analysis yielded an inhomogeneous distribution for Cu, Zn, and Pt in thin kidney sections. Copper was enriched in the capsule and outer cortex, zinc in the inner cortex and the platinum concentration followed a centripetal gradient with clear medullar enrichment. Thus, scanning LA-ICP-MS may be a useful tool in the preclinical development of new and less nephrotoxic platinum complexes.  相似文献   
9.
10.
In recent years the purification and/or pre-concentration of radionuclides before the measurement has grown increasing interest in analytical chemistry. In this study, a new compact and portable stand-alone equipment permitting automatisation of various separation tasks is developed. The new system allows performing quick and reliable automated separation of the selected radionuclide. Since there is no need for permanent manual control of the separation procedures (automatic loading of the sample, washing and stripping solution on the column are controlled via a computer program) the system can be operated overnight. The new system posses the possibility of more variable control for the separation process via new developed user-friendly software, is shielded against the chemical vapors and could be universally equipped with any available chromatographic column. For the automated separation of U, Pu and Am isotopes (achieved recoveries were in the range of 65–95 %, depending on the element separated. The data, presented, show that the application of the module should be also straightforward for other elements: simply by changing the chromatographic columns with the resin having high chemical selectivity for the target ion. The developed separation column module, software and hardware can be readily adapted in any laboratory to meet defined analytical requirements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号