首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  国内免费   1篇
化学   16篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2000年   1篇
  1996年   1篇
排序方式: 共有16条查询结果,搜索用时 828 毫秒
1.
The choice of solvent is quite important to obtain good protecting surface film on graphite negative electrodes in rechargeable lithium batteries. A subtle difference of the molecular structure of solvent greatly affects the easiness of surface film formation. In order to understand the solvent effects and to elucidate the mechanism of surface film formation, morphology changes of the basal plane of highly oriented pyrolytic graphite were studied using electrochemical scanning tunneling microscopy (EC‐STM). In this article, our recent results of EC‐STM observation in different solvent systems are reviewed.  相似文献   
2.
The stability at elevated temperatures of a solid electrolyte interphase (SEI) formed on a graphite negative electrode in lithium ion batteries was investigated by storage tests and in situ atomic force microscopy (AFM) observation. When the fully discharged graphite electrode was stored at elevated temperatures, the irreversible capacity in the following cycle increased remarkably. On the other hand, when the electrode was stored at the fully charged state at elevated temperatures, it was severely self-discharged during storage. AFM observation of the SEI layer formed on a model electrode of highly oriented pyrolytic graphite revealed two important facts on the stability of the SEI at elevated temperatures: (i) dissolution and agglomeration of the SEI layer at the discharged state and (ii) serious SEI growth at the charged state. These phenomena well explain the results of the charge and discharge tests. It was also shown that the addition of vinylene carbonate greatly improves the stability of the SEI at elevated temperatures, and gives good charge and discharge performance after storage.  相似文献   
3.
For enhancement of lithium-ion transference number, lithium-ion-conductive polymer electrolytes have been prepared from polyethylene oxide (PEO), lithium salt of LiCF3SO3 or LiF, plasticizer of polyethylene glycol dimethylether (PEGDME), and anion receptor of tris(pentafluorophenyl)borane (TPFB). Transport properties of the resultant polymer electrolytes have been studied by AC impedance spectroscopy. As a result, lithium-ion transference number increased with increasing TPFB due to the restriction of anion conduction by the interaction between anion and anion receptor. Effects of anion receptor on transport properties are discussed.  相似文献   
4.
The electrical conduction mechanism of mixed conductive perovskite oxides, La(0.6)Sr(0.4)Co(0.8)Fe(0.2)O(3-δ), for cathode materials of solid oxide fuel cells has been investigated from electronic structural changes during oxygen vacancy formation. La(0.6)Sr(0.4)Co(0.8)Fe(0.2)O(3-δ) was annealed under various oxygen partial pressures p(O(2))s at 1073 K and quenched. Iodometric titration indicated that the oxygen nonstoichiometry of La(0.6)Sr(0.4)Co(0.8)Fe(0.2)O(3-δ) depended on the annealing p(O(2)), with more oxygen vacancies introduced at lower than at higher p(O(2))s. X-Ray absorption spectroscopic measurements were performed at the O K-, Co L-, Fe L-, Co K-, and Fe K-edges. The valence states of the Co and Fe ions were investigated by the X-ray absorption near edge structure (XANES) at the Co and Fe L(III)-edges. While the Fe average valence was almost constant, the valence of the Co ions decreased with oxygen vacancy introduction. The O K-edge XANES spectra indicated that electrons were injected into the Co 3d/O 2p hybridization state with oxygen vacancy introduction. Both absorption edges at the Co and Fe K-edge XANES shifted towards lower energies with oxygen vacancy introduction. The shift at the Co K-edge resulted from the decrease in the Co average valence and that at the Fe K-edge appeared to be caused by changes in the coordination environment around the Fe ions. The total conductivity of La(0.6)Sr(0.4)Co(0.8)Fe(0.2)O(3-δ) decreased with decreasing p(O(2)), due to a decreasing hole concentration.  相似文献   
5.
A high proton-conducting phase appears in the composites of zirconium- and titanium-oxide nanoparticles and polyphosphoric acid (HPO(3)). Metal oxide nanoparticles (ZrO(2) and TiO(2)) react with HPO(3) and form composite electrolytes containing pyrophosphates (ZrP(2)O(7) or TiP(2)O(7)) and shortened HPO(3) chains. The ZrO(2)-HPO(3) composite exhibits eleven times higher conductivity than sole HPO(3) at the maximum. A formed layer of shortened HPO(3) chains surrounding the pyrophosphates enhances the proton conductivities of the composite electrolytes and reduces the activation energies for the proton conductivities from 50 to 30 kJ mol(-1).  相似文献   
6.
The hydrogen concentration of solutions supersaturated with hydrogen comprising dissolved hydrogen and hydrogen bubbles obtained through water electrolysis was studied. The rate of decrease in concentration of hydrogen nanobubble diameter below 600 nm and dissolved hydrogen with elapsed time after electrolysis was seemed to be independent of ionic strength and ion type and storage temperature. The concentration of hydrogen nanobubbles (mol dm(-3)) in electrolyzed water decreases with ionic strength, while the total hydrogen concentration remains roughly constant. The hydrogen nanobubble concentration increases in accordance with the nature of ions existing in solution in the following order I- < Br- < Cl- and K+ < Li+ < Na+. It is shown that the ratio of hydrogen nanobubble concentration to total hydrogen concentration of hydrogen in a catholyte strongly depends on the ratio in the supersaturated hydrogen solution near the electrode surface.  相似文献   
7.
The electronic and local structures of partially anion-substituted lithium manganese spinel oxides as positive electrodes for lithium-ion batteries were investigated using X-ray absorption spectroscopy (XAS). LiMn(1.8)Li(0.1)Ni(0.1)O(4-η)F(η) (η = 0, 0.018, 0.036, 0.055, 0.073, 0.110, 0.180) were synthesized by the reaction between LiMn(1.8)Li(0.1)Ni(0.1)O(4) and NH(4)HF(2). The shift of the absorption edge energy in the XANES spectra represented the valence change of Mn ion with the substitution of the low valent cation as Li(+), Ni(2+), or F(-) anion. The local structural change at each compound with the amount of a Jahn-Teller Mn(3+) ion could be observed by EXAFS spectra. The discharge capacity of the tested electrode was in the order of LiMn(2)O(4) > LiMn(1.8)Li(0.1)Ni(0.1)O(4-η)F(η) (η = 0.036) > LiMn(1.8)Li(0.1)Ni(0.1)O(4) while the cycleability was in the order of LiMn(1.8)Li(0.1)Ni(0.1)O(4-η)F(η) (η = 0.036) ≈ LiMn(1.8)Li(0.1)Ni(0.1)O(4) > LiMn(2)O(4). It was clarified that LiMn(1.8)Li(0.1)Ni(0.1)O(4-η)F(η) has a good cycleability because of the anion doping effect and simultaneously shows acceptable rechargeable capacity because of the large amount of the Jahn-Teller Mn(3+) ions in the pristine material.  相似文献   
8.
Water electrolysis is well known to produce solutions supersaturated with oxygen. The oxygen in electrolyzed solutions was analyzed with a dissolved oxygen meter and the Winkler method of chemical analysis. The concentration of oxygen measured with the dissolved oxygen meter agreed with that obtained using the Winkler method. However, measurements using a 10-fold dilution method showed a larger concentration of dissolved oxygen compared to the above methods. We developed a modified Winkler method to measure total oxygen concentration more accurately, which agreed with the results obtained from the 10-fold dilution experiment. The difference in measurements is due to the existence of oxygen nanobubbles, as confirmed by the observation of dynamic light scattering using a laser. Further analysis of the oxygen nanobubbles demonstrated that the stability of the nanobubbles was sufficient for chemical reaction and solvation to bulk solution.  相似文献   
9.
A solution supersaturated with hydrogen obtained by water electrolysis was studied using cyclic voltammetry. The cyclic voltammogram of the solution supersaturated with hydrogen gave a peak current at −0.1 V vs. AgAgCl. No peak current in a solution saturated with hydrogen was observed by bubbling hydrogen gas through the solution. The peak current was influenced by the temperature and ion type of the electrolyte. The peak current was found to be due to the presence of hydrogen nanobubbles. The peak current increased with increasing hydrogen nanobubble concentration and decreased to zero within 3 h after electrolysis.  相似文献   
10.
Fluorocarbon polymer films were prepared by plasma polymerization using nitrogen trifluoride (NF3) and propylene as starting materials. To improve their adhesiveness to substrates, a novel functionally gradient film in which the content of fluorine decreased continuously from the surface to the interior was prepared by changing source gas composition during deposition. This film had a smooth and pinhole-free surface, and had a high contact angle (110°) for water drop. In addition, it showed good adhesion to a glass substrate. © 1996 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号