首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
化学   7篇
  2017年   3篇
  2013年   1篇
  2009年   1篇
  2007年   1篇
  2005年   1篇
排序方式: 共有7条查询结果,搜索用时 31 毫秒
1
1.
In the present work, poly(propylene glycol) (PPG) was block copolymerized to form polylactide-poly(propylene glycol)-polylactide (PL-PPG-PL) triblock copolymers for preparing flexible stereocomplex PL (scPL) blend films. The scPL blend films were prepared by solution blending of poly(L-lactide)-PPG-poly(L-lactide) (PLL-PPG-PLL) and poly(D-lactide)- PPG-poly(D-lactide) (PDL-PPG-PDL) triblock copolymers before film casting. The influences of PL end-block lengths (2 × 104 and 4 × 104 g/mol) and blend ratios (75/25, 50/50 and 25/75 W/W) on the stereocomplexation and mechanical properties of the blend films were evaluated. From DSC and WAXD results, the 50/50 blend films had complete stereocomplexation. Phase separation between the scPL and PPG phases was not observed from their SEM images. The tensile stress and elongation at break increased with the sterecomplex crystallinities and PL end-block lengths. The PPG middle-blocks enhanced elongation at break of the scPL films. The results showed that the PL-PPG-PL triblock structures did not affect stereocomplexation of the PLL/PDL block blending. In conclusion, the phase compatibility and flexibility of the scPL films were improved by PPG block copolymerization.  相似文献   
2.
Nanoparticle colloids of methoxy poly(ethylene glycol)-b-poly(D,L-lactide) (MPEG-b-PDLL) diblock copolymer were prepared by a modified spontaneous emulsification solvent diffusion method using acetone/ethanol as the mixture organic solvents. The MPEG-b-PDLL was synthesized by ring-opening polymerization of D,L-lactide using stannous octoate and MPEG with molecular weight of 5,000 g/mol as the initiating system. The MPEG-b-PDLL obtained was an amorphous polymer with molecular weight of 73,600 g/mol. Influences of acetone/ethanol (v/v) ratios and Tween 80 surfactant concentrations on characteristics of the colloidal nanoparticles were investigated and discussed. Light-scattering analysis showed that average diameters of the surfactant-free colloidal nanoparticles were in the range of 86–124 nm. The nanoparticle sizes decreased as the ethanol ratio increased. The Tween 80 did not show the significant effect on the nanoparticle sizes. Scanning electron micrographs of dried nanoparticles that demonstrated the aggregation of most particles suggested they were the soft nanoparticles. However, the dried nanoparticle morphology can be observed from scanning electron microscopy as having a spherical shape and smooth surfaces.  相似文献   
3.
ABA triblock copolymers of L ‐lactide (LL) and ε‐caprolactone (CL), designated as PLL‐P(LL‐co‐CL)‐PLL, were synthesized via a two‐step ring‐opening polymerization in bulk using diethylene glycol and stannous octoate as the initiating system. In the first‐step reaction, an approximately 50:50 mol% P(LL‐co‐CL) random copolymer (prepolymer) was prepared as the middle (B) block. This was then chain extended in the second‐step reaction by terminal block polymerization with more L ‐lactide. The percentage yields of the triblock copolymers were in excess of 95%. The prepolymers and triblock copolymers were characterized using a combination of dilute‐solution viscometry, gel permeation chromatography (GPC), 1H‐ and 13C‐NMR, and differential scanning calorimetry (DSC). It was found that the molecular weight of the prepolymer was controlled primarily by the diethylene glycol concentration. All of the triblock copolymers had molecular weights higher than their respective prepolymers. 13C‐NMR analysis confirmed that the prepolymers contained at least some random character and that the triblock copolymers consisted of additional terminal PLL end (A) blocks. From their DSC curves, the triblock copolymers were seen to be semi‐crystalline in morphology. Their glass transition, solid‐state crystallization, and melting temperature ranges, together with their heats of melting, all increased as the PLL end (A) block length increased. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
4.
In the present work, poly(propylene glycol)(PPG) was block copolymerized to form polylactide-poly(propylene glycol)-polylactide(PL-PPG-PL) triblock copolymers for preparing flexible stereocomplex PL(sc PL) blend films. The sc PL blend films were prepared by solution blending of poly(L-lactide)-PPG-poly(L-lactide)(PLL-PPG-PLL) and poly(D-lactide)-PPG-poly(D-lactide)(PDL-PPG-PDL) triblock copolymers before film casting. The influences of PL end-block lengths(2×10~4 and 4×10~4 g/mol) and blend ratios(75/25, 50/50 and 25/75 W/W) on the stereocomplexation and mechanical properties of the blend films were evaluated. From DSC and WAXD results, the 50/50 blend films had complete stereocomplexation. Phase separation between the sc PL and PPG phases was not observed from their SEM images. The tensile stress and elongation at break increased with the sterecomplex crystallinities and PL end-block lengths. The PPG middle-blocks enhanced elongation at break of the sc PL films. The results showed that the PL-PPG-PL triblock structures did not affect stereocomplexation of the PLL/PDL block blending. In conclusion, the phase compatibility and flexibility of the sc PL films were improved by PPG block copolymerization.  相似文献   
5.
Biodegradable methoxy poly(ethylene glycol)-b-poly(d,l-lactide) (MPEG-b-PDLL) and methoxy poly(ethylene glycol)-b-poly(ε-caprolactone) (MPEG-b-PCL) diblock copolymers were synthesized by ring-opening polymerization of DLL and CL monomers in bulk using stannous octoate, and MPEG as the initiating system. Surfactant-free MPEG-b-PDLL/MPEG-b-PCL blend nanoparticles were prepared by the nanoprecipitation method. The influences of block length and blend ratio on morphology, average size, and thermal properties of the blend nanoparticles were determined. The blend nanoparticles were spherical in shape. The average particle sizes slightly decreased as the MPEG-b-PCL blend ratio increased. 1H-NMR and thermogravimetry revealed the different MPEG-b-PDLL/MPEG-b-PCL blend ratios of the nanoparticles. Differential scanning calorimetry showed that the MPEG-b-PCL crystallinity steadily decreased as the MPEG-b-PDLL blend ratio increased, suggesting miscible blending between the MPEG-b-PDLL and MPEG-b-PCL in the amorphous phase of the nanoparticle matrix.  相似文献   
6.
Surfactant-free nanoparticles of methoxy poly(ethylene glycol)-b-poly(D,L-lactide-co-glycolide-co-ɛ-caprolactone) diblock copolymers (MPEG-b-PDLLGCL) with different DLL:G:CL ratios were prepared by modified-spontaneous emulsification solvent diffusion method. Sizes of resulted colloidal nanoparticles obtained from light-scattering analysis were in the range of 121–132 nm with narrow size distribution. The nanoparticle sizes depended on the composition of the PDLLGCL block. Scanning electron microscopy demonstrated that the nanoparticles were aggregated after drying process, suggested they were soft nanoparticles. However, their initial aggregates can be observed and it was shown that the nanoparticles have spherical shape with smooth surface. The text was submitted by the authors in English.  相似文献   
7.
The plasticization of stereocomplex polylactide (scPLA) with poly(propylene glycol) (PPG) is described. The poly(L-lactide) (PLLA), poly(D-lactide) (PDLA) and PPG were completely blended in chloroform before film casting to prepare scPLA/PPG blend films. The PLLA/PDLA ratio was fixed at 50/50 (w/w). The PPG blending enhanced the stereocomplex formation of the scPLA films. The stereocomplex crystallinities of the scPLA films increased as the PPG blend ratio increased, the PPG molecular weight decreased and the PDLA molecular weight decreased. The PPG blending significantly decreased the T g and film transparency, and improved the elongation at break of the scPLA films. The results indicated that the PPG blending had an effect on the stereocomplexation and it improved the flexibility of the scPLA films.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号