首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   1篇
化学   48篇
力学   5篇
物理学   1篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2013年   2篇
  2012年   6篇
  2011年   10篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   5篇
  2006年   5篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  1999年   1篇
  1994年   1篇
  1992年   1篇
  1985年   1篇
排序方式: 共有54条查询结果,搜索用时 31 毫秒
1.
Abstract— The binding of hematoporphyrin derivated (Hpd) to lipid vesicles and bacterial membranes was determined by fluorescence spectroscopy. The fluorescence measurements of Hpd in aqueous solutions showed two bands at 613 and 677 nm. In lipid environments of lecithin vesicles the fluorescence spectrum was shifted to 631 and 692 nm, respectively. Hpd was rapidly bound to the cell membrane of Staphylococcus aureus while much less binding occurred in the presence of Escherichia coli. At the same time, spheroplasts of both bacteria were shown to bind Hpd to a similar extent. These results are well correlated with the photoinactivation of the gram positive bacteria with Hpd while the gram negative cells were shown to be resistant. The pH dependence of both Hpd binding to S. aureus as well as the photodynamic inhibitory effect of the same bacteria are similar. It is concluded that the segregation of Hpd to the cell membrane is a prerequisite for its photodynamic effect.  相似文献   
2.
3.
We present a comparative investigation of two opposite classes of self-assembled fibrillar networks. Ribbons and tubes having cross-sectional dimensions in the nanoscale can be formed in aqueous solutions of steroids derived, respectively, from deoxycholic (DC) and lithocholic (LC) acids. Rheological features distinguish energetic networks of DC ribbons rigidly fixed in cylindrical bundles and entropic transient networks of LC tubes weakly interacting in shear-sensitive suspensions. The two classes are characterized by their frequency sweep profiles, viscoelastic linear domains, scaling laws of the elastic shear modulus vs concentration, kinetics of formation of the networks, and their optical birefringence aspects. A theoretical context for networks of rigid fibers is used to account for the scaling exponents α in the G’ (and σ*) ∝C α laws (α=2.0 and 1.0, respectively, for DC and LC). The evolution observed in DC gels from ribbons to cylindrical fibers with monodisperse sections made up with four ribbons is an indication of an equilibrated balance between face-to-face attractions and untwisting elastic processes of the constitutive ribbons.Paper presented at the Annual Meeting of the European Society of Rheology, Grenoble, April 2005  相似文献   
4.
Biological media affect the physicochemical properties of cationic lipid-DNA complexes (lipoplexes) and can influence their ability to transfect cells. To develop new lipids for efficient DNA delivery, the influence of serum-containing media on the structures and properties of the resulting lipoplexes must be understood. To date, however, a clear and general picture of how serum-containing media influences the structures of lipoplexes has not been established. Some studies suggest that serum can disintegrate lipoplexes formed using certain types of cationic lipids, resulting in the inhibition of transfection. Other studies have demonstrated that lipoplexes formulated from other lipids are stable in the presence of serum and are able to transfect cells efficiently. In this article, we describe the influence of serum-containing media on lipoplexes formed using the redox-active cationic lipid bis(n-ferrocenylundecyl)dimethylammonium bromide (BFDMA). This lipoplex system promotes markedly decreased levels of transgene expression in COS-7 cells as serum concentrations are increased from 0 to 2, 5, 10, and 50% (v/v). To understand the cause of this decrease in transfection efficiency, we used cryogenic transmission electron microscopy (cryo-TEM) and measurements of zeta potential to characterize lipoplexes in cell culture media supplemented with 0, 2, 5, 10, and 50% serum. Cryo-TEM revealed that in serum-free media BFDMA lipoplexes form onionlike, multilamellar nanostructures. However, the presence of serum in the media caused disassociation of the intact multilamellar lipoplexes. At low serum concentrations (2 and 5%), DNA threads appeared to separate from the complex, leaving the nanostructure of the lipoplexes disrupted. At higher serum concentration (10%), disassociation increased and bundles of multilamellae were discharged from the main multilamellar complex. In contrast, lipoplexes characterized in serum-free aqueous salt (Li(2)SO(4)) medium and in OptiMEM cell culture medium (no serum) did not exhibit significant structural changes. The zeta potentials of lipoplexes in serum-free media (salt medium and cell culture medium) were similar (e.g., approximately -35 mV). Interestingly, the presence of serum caused the zeta potentials to become less negative (about -20 mV in OptiMEM and -10 mV in Li(2)SO(4)), even though serum contains negatively charged entities that have been demonstrated to lead to more negative zeta potentials in other lipoplex systems. The combined measurements of zeta potential and cryo-TEM are consistent with the proposition that DNA threads separate from the lipoplex in the presence of serum, resulting in a decrease in the net negative charge of the surface of the lipoplex.  相似文献   
5.
6.
7.
We report characterization of the nanostructures of complexes formed between the redox-active lipid bis(n-ferrocenylundecyl)dimethylammonium bromide (BFDMA) and DNA using small-angle neutron scattering (SANS) and cryogenic transmission electron microscopy (cryo-TEM). A particular focus was directed to the influence of lipid oxidation state (where reduced BFDMA has a net charge of +1 and oxidized BFDMA has a charge of +3) on the nanostructures of the solution aggregates formed. Complexes were characterized over a range of charge ratios of reduced BFDMA to DNA (1.1:1, 2.75:1, and 4:1) in solutions of 1 mM Li2SO4. For these complexes, a single peak in the SANS data at 1.2 nm(-1) indicated that a nanostructure with a periodicity of 5.2 nm was present, similar to that observed with complexes of the classical lipids DODAB/DOPE and DNA (multilamellar spacing of 7.0 nm). The absence of additional Bragg peaks in all the SANS data indicated that the periodicity did not extend over large distances. Both inverse Fourier transform analysis and form factor fitting suggested formation of a multilamellar vesicle. These results were confirmed by cryo-TEM images in which multilamellar complexes with diameters between 50 and 150 nm were observed with no more than seven lamellae per aggregate. In contrast to complexes of reduced BFDMA and DNA, Bragg peaks were absent in SANS spectra of complexes formed by oxidized BFDMA and DNA at all charge ratios investigated. The low-q behavior of the SANS data obtained using oxidized BFDMA and DNA complexes suggested that large, loose aggregates were formed, consistent with complementary cryo-TEM images showing predominantly loose disordered aggregates. Some highly ordered spongelike and cubic phase nanostructures were also detected in cryo-TEM images. We conclude that control of BFDMA oxidation state can be used to manipulate the nanostructures of lipid-DNA complexes formed using BFDMA.  相似文献   
8.
The ability of low-frequency ultrasound (LFUS) to release encapsulated drugs from sterically stabilized liposomes in a controlled manner was demonstrated. Three liposomal formulations having identical lipid bilayer compositions and a similar size ( approximately 100 nm) but differing in their encapsulated drugs and methods of drug loading have been tested. Two of the drugs, doxorubicin and methylpredinisolone hemisuccinate, were remote loaded by transmembrane gradients (ammonium sulfate and calcium acetate, respectively). The third drug, cisplatin, was loaded passively into the liposomes. For all three formulations, a short exposure to LFUS (<3 min) released nearly 80% of the drug. The magnitude of drug release was a function of LFUS amplitude and actual exposure time, irrespective of whether irradiation was pulsed or continuous. Furthermore, no change in liposome size distribution or in the chemical properties of the lipids or of the released drugs occurred due to exposure to LFUS. Based on our results, we propose that the mechanism of release is a transient introduction of porelike defects in the liposome membrane, which occurs only during exposure to LFUS, after which the membrane reseals. This explains the observed uptake of the membrane-impermeable fluorophore pyranine from the extraliposomal medium during exposure to LFUS. The implications of these findings for clinical applications of controlled drug release from liposomes are discussed.  相似文献   
9.
The stability and state of aggregation of aqueous fibrinogen (FB) and dipalmitoylphosphatidylcholine (DPPC) vesicles in water or buffer at 25 degrees C were studied with dynamic light scattering (DLS), UV-vis spectroturbidimetry (ST), and cryo-transmission electron microscopy (cryo-TEM). In water, when 1000 ppm (0.10 wt %) DPPC dispersions were prepared with a protocol including extensive sonication, they contained mostly vesicles and were quite clear, transparent, and stable for at least 30 days. FB mixtures with water (0.075 wt %) were quite unstable and biphasic. They formed large aggregates which eventually precipitated. The addition of DPPC vesicles into these unstable FB dispersions reversed FB aggregation and precipitation and produced stable translucent microdispersions. The inferred lipid/protein aggregates were limited in size, with average diameters ranging from 200 to 300 nm. In buffer, DPPC dispersions were also clear and quite stable, with average dispersed particles diameter of ca. 90 nm. FB dissolved in aqueous buffer and formed transparent and stable solutions. Adding salt to an aggregated FB dispersion in water reversed the aggregation. FB aggregated and redissolved in the presence of the citrate and after the citrate was removed. There was no effect of citrate (present in FB initially) in the FB aggregation or redissolution. FB molecules in buffer form dimers or higher aggregates. Their average aggregation number is 2, determined with Rayleigh scattering analysis of turbidity data. The average hydrodynamic diameter of FB solutions from DLS was 30 nm. Mixing a stable FB solution in buffer and a stable DPPC dispersion in buffer produced highly unstable mixtures, in which large aggregates precipitated. These results have implications in understanding the interactions of lipids and proteins in many biological applications and food processing applications.  相似文献   
10.
The phototoxic effect of illumination with broadband visible light on the viability of two Staphylococcus aureus strains was examined in the present study. A difference in the light sensitivity of the two strains was found. Illumination of the tested strains with a fluence rate of 180 J cm−2 caused a reduction of up to 99.8% in the colony count of one of the strains (the "sensitive" strain). Illumination of the other strain (the "resistant" strain) resulted in a 55.5% reduction in viability. Proliferation of both strains was observed at low fluence rates of light. The phototoxic effect was found to be dependent on oxy radical production. The light-sensitive strain produced higher amounts of hydroxyl and superoxide radicals than the "resistant" strain. Adaptation to oxidative stress was exhibited only by the "resistant" strain. The "sensitive" strain produced ten times more endogenous porphyrins and secreted almost nine times more porphyrins than the resistant strain. Furthermore, the "resistant" strain produced twice as many carotenoids that protect the strain from illumination than the "sensitive" strain. These results indicate that high intensities of visible light cause bacterial photoeradication, a reaction which may assist wound healing by killing the infecting bacteria. On the other hand, low intensities of white light were found to enhance bacterial proliferation and thus prolong wound infection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号