首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
化学   6篇
数学   1篇
物理学   8篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2008年   3篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2000年   1篇
  1999年   1篇
排序方式: 共有15条查询结果,搜索用时 21 毫秒
1.
Recent experimental investigations show that large-area samples of graphene tend to be polycrystalline. Physical properties of such samples are strongly affected by the presence of intrinsic topological defects of polycrystalline materials—dislocations and grain boundaries. This article reviews recent progress in understanding dislocations and grain boundaries in graphene. First, a systematic approach towards constructing topological defects in graphene is introduced. Then, the review discusses the formation energies of these defects, stressing the dramatic stabilization of dislocations and small-angle grain boundaries in graphene due to the two-dimensional nature of this material. Finally, the electronic transport properties of polycrystalline graphene are considered, showing that topological defects may present novel opportunities towards engineering electronic devices based on graphene.  相似文献   
2.
A finite-temperature linear tetrahedron method for electronic structure calculations of periodic systems is developed. When compared to widely used simple temperature broadening, the number of k points necessary for accurate integration at finite temperatures is reduced. The utility of the method is demonstrated with benchmark calculations on 1D, 2D, and 3D systems.  相似文献   
3.
Crystalline systems often lower their energy by atom displacements from regular high-symmetry lattice sites. We demonstrate that such symmetry lowering distortions can be visualized by ultrahigh resolution transmission electron microscopy even at single point defects. Experimental investigation of structural distortions at the monovacancy defects in suspended bilayers of hexagonal boron nitride (h-BN) accompanied by first-principles calculations reveals a characteristic charge-induced pm symmetry configuration of boron vacancies. This symmetry breaking is caused by interlayer bond reconstruction across the bilayer h-BN at the negatively charged boron vacancy defects and results in local membrane bending at the defect site. This study confirms that boron vacancies are dominantly present in the h-BN membrane.  相似文献   
4.
In this article we compare the classical monopole mass filter of von Zahn and the monopole mass filter with a hyperbolic V-shaped electrode. The experimental results and those of computer simulation for both mass spectrometers are presented. We show that the replacement of a conventional 90 degrees V-shaped electrode by an electrode with a hyperbolic profile substantially improves the peak shape of any given mass, and increases the mass resolution by a factor of 3-4 and the abundance sensitivity by a factor of 100. The potential of high analytical performance combined with electroforming techniques for electrode manufacture indicate future practical uses of such instruments. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   
5.
Rotational correlation times of metal ion aqua complexes can be determined from 17O NMR relaxation rates if the quadrupole coupling constant of the bound water oxygen-17 nucleus is known. The rotational correlation time is an important parameter for the efficiency of Gd3+ complexes as magnetic resonance imaging contrast agents. Using a combination of density functional theory with classical and Car-Parrinello molecular dynamics simulations we performed a computational study of the 17O quadrupole coupling constants in model aqua ions and the [Gd(DOTA)(H2O)]- complex used in clinical diagnostics. For the inner sphere water molecule in the [Gd(DOTA)(H2O)]- complex the determined quadrupole coupling parameter chi square root of (1 + eta2/3) of 8.7 MHz is very similar to that of the liquid water (9.0 MHz). Very close values were also predicted for the the homoleptic aqua ions of Gd3+ and Ca2+. We conclude that the 17O quadrupole coupling parameters of water molecules coordinated to closed shell and lanthanide metal ions are similar to water molecules in the liquid state.  相似文献   
6.
We performed an ab initio molecular dynamics simulation of the paramagnetic transition metal ion Cr3+ in aqueous solution. Isotropic hyperfine coupling constants between the electron spin of the chromium ion and nuclear spins of all water molecules have been determined for instantaneous snapshots extracted from the trajectory. The coupling constant of first sphere oxygen, A iso(17OI)=1.9±0.3 MHz, is independent on Cr–OI distance but increases with the tilt angle for the water molecule approaching 180°. First sphere hydrogen spins have A iso(1 HI)=2.1±0.2 MHz which decreases with increasing tilt angle and shows a Cr–HI distance dependence. The hyperfine coupling constants for second sphere 17O is negative and an order of magnitude smaller (−0.20±0.02 MHz) compared to first sphere.  相似文献   
7.
We applied first principles molecular dynamics (MD) technique to study structure, dynamics, and magnetic interactions of the Gd(3+) aqua ion dissolved in liquid water, a prototypical system for Gd-based complexes used as contrast agents for magnetic resonance imaging. The first coordination sphere contains eight water molecules with an average Gd-O distance of 2.37 A and an average geometric arrangement close to a square antiprism. The mean tilt angle of the electric dipole vector of these water molecules is theta=145 degrees . In our picosecond time scale simulation we observe no exchange event from the first coordination sphere but only fast "wagging" motions. The second coordination sphere is well pronounced though water molecules in this sphere are subjected to large amplitude dynamic motions. The isotropic hyperfine coupling constants for the inner sphere water molecules [A(iso)((17)O(I))=0.65+/-0.03 MHz, A(iso)((1)H(I))=0.085+/-0.005 MHz] are in good agreement with experimental data and with an earlier study using classical MD. Second sphere Fermi contact hyperfine coupling constants calculated are more than one order of magnitude smaller and of opposite sign as those of the first coordination sphere. The effect of spin polarization induced by the paramagnetic Gd(3+) ion on the dipolar hyperfine interaction was found to be sizable only for the (17)O nuclei of inner sphere water molecules and has a screening character.  相似文献   
8.
Asymptotic analysis of the problem describing deformation ofa thin cylindrical plate with clamped lateral side is performed.The problem is considered under the most general statement withthe plate being laminated and consisting of an arbitrary numberof nonhomogeneous and anisotropic (21 elastic moduli) layers.Explicit integral representations of the differential operatorswhich form the two-dimensional model of the plate are derived.In the case when the elastic moduli of each of the layers areconstant, these integral representations turn into algebraicones. The asymptotic procedure is justified with the help ofa weighted inequality of Korn's type. The error estimates obtainedgive a rigorous mathematical proof of both of Kirchhoff's hypotheses(kinematic and static) and shed light on the well-known intrinsicinconsistency of two of the hypotheses.  相似文献   
9.
Using a first-principles approach, we investigate the origin of the fine structure in Si 2p photoelectron spectra at the Si(100)-(2 x 1) surface and at the Si(100)-SiO2 interface. Calculated and measured shifts show very good agreement for both systems. By using maximally localized Wannier functions, we clearly identify the shifts resulting from the electronegativity of second-neighbor atoms. The other shifts are then found to be proportional to the average bond-length variation around the Si atom. Hence, in combination with accurate modeling, photoelectron spectroscopy can provide a direct measure of the strain field at the atomic scale.  相似文献   
10.
The magnetic properties of disordered graphene and irradiated graphite are systematically studied using a combination of mean-field Hubbard model and first-principles calculations. By considering large-scale disordered models of graphene, I conclude that only single-atom defects can induce ferromagnetism in graphene-based materials. The preserved stacking order of graphene layers is shown to be another necessary condition for achieving a finite net magnetic moment of irradiated graphite. Ab initio calculations of hydrogen binding and diffusion and of interstitial-vacancy recombination further confirm the crucial role of stacking order in pi-electron ferromagnetism of proton-bombarded graphite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号