首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   2篇
化学   17篇
力学   2篇
物理学   1篇
  2021年   8篇
  2017年   2篇
  2016年   2篇
  2014年   2篇
  2013年   1篇
  2011年   4篇
  1986年   1篇
排序方式: 共有20条查询结果,搜索用时 218 毫秒
1.
Miscanthus is resistant to dry, frosty winters in Poland and most European Union countries. Miscanthus gives higher yields compared to native species. Farmers can produce Miscanthus pellets after drying it for their own heating purposes. From the third year, the most efficient plant development begins, resulting in a yield of 25–30 tons of dry matter from an area of 1 hectare. Laboratory scale tests were carried out on the processes of drying, compacting, and torrefaction of this biomass type. The analysis of the drying process was conducted at three temperature levels of the drying agent (60, 100, and 140 °C). Compaction on a hydraulic press was carried out in the pressure range characteristic of a pressure agglomeration (130.8–457.8 MPa) at different moisture contents of the raw material (0.5% and 10%). The main interest in this part was to assess the influence of drying temperature, moisture content, and compaction pressure on the specific densities (DE) and the mechanical durability of the pellets (DU). In the next step, laboratory analyses of the torrefaction process were carried out, initially using the Thermogravimetric Analysis TGA and Differential Scaning Calorimeter DSC techniques (to assess activation energy (EA)), followed by a flow reactor operating at five temperature levels (225, 250, 275, 300, and 525 °C). A SEM analysis of Miscanthus after torrefaction processes at three different temperatures was performed. Both the parameters of biochar (proximate and ultimate analysis) and the quality of the torgas (volatile organic content (VOC)) were analyzed. The results show that both drying temperature and moisture level will affect the quality of the pellets. Analysis of the torrefaction process shows clearly that the optimum process temperature would be around 300–340 °C from a mass loss ratio and economical perspective.  相似文献   
2.
The dependence of the properties of so-called "surface nanobubbles" at the interface of binary self-assembled monolayers (SAMs) of octadecanethiol (ODT) and 16-mercaptohexadecanoic acid (MHDA) on ultraflat template-stripped gold and water on the surface composition was studied systematically by in situ atomic force microscopy (AFM). The macroscopic water contact angle (θ(macro)) of the SAMs spanned the range between 107° ± 1° and 15° ± 3°. Surface nanobubbles were observed on all SAMs by intermittent contact-mode AFM; their size and contact angle were found to depend on the composition of the SAM. In particular, nanoscopic contact angles θ(nano) < 86° were observed for the first time for hydrophilic surfaces. From fits of the top of the bubble profile to a spherical cap in three dimensions, quantitative estimates of nanobubble height, width, and radius of curvature were obtained. Values of θ(nano) calculated from these data were found to change from 167° ± 3° to 33° ± 58°, when θ(macro) decreased from 107° ± 1° to 37° ± 3°. While the values for θ(nano) significantly exceeded those of θ(macro) for hydrophobic SAMs, which is fully in line with previous reports, this discrepancy became less pronounced and finally vanished for more hydrophilic surfaces.  相似文献   
3.
4.
Contributions to the Chemistry of Silicon Sulfur Compounds. XXXVIII. Hexa(tri-t-butoxy)disiloxane and Hexa(tri-t-butoxy)disilthiane Hexa(tri-t-butoxy)disiloxane 1 and Hexa(tri-t-butoxy)disilthiane 2 were prepared by reaction of R3SiONa with R3SiCl and R3SiSNa with R3SiCl (R = tri-t-butoxy), respectively. The mass spectra show characteristic series of fragments. A large 29Si n.m.r. chemical shift of about —103.55 ppm is observed with 1 , whereas the value of 2 is —75.99 ppm. The crystal structure analysis of 1 result first in a colinear molecule (Si? ;O? ;Si = 180°) with 1 symmetry and relative short mean bond lengths of about d(Si? ;O) = 155.6 pm, but with large and strong anisotropic ellipsoids. Their quantitative rigid body analyses yield decisive corrections, namely a bent molecule with an Si? ;O? ;Si angle of 144.0° and d?corr = 163.5 pm. Molecule 2 is also bent as expected (Si? ;S? ;Si = 110.5°, d?(Si? ;S) = 211.9 pm and after rigid body correction 108.0° and dcorr = 215.2 pm, respectively). The results of our investigations will be discussed corresponding to the energy differences of the varying configurations at the bridging atoms.  相似文献   
5.
Triazolo[3,4‐a]phthalazine as well as their chloro and nitro derivatives were subjected to the reactions with the carbanions typical for the vicarious nucleophilic substitution (VNS) of hydrogen. The reactions were strongly dependent on the substituents present on the triazolo[3,4‐a]phthalazine ring and resulted not only in the substitution of hydrogen but also in exchange of chlorine atom and pyridazine ring scission; the latter process dominated for the unsubstituted triazolophthalazine. Two of the products showed promising stimulating activity towards the central nervous system with no significant toxic effects.  相似文献   
6.
This study investigated the antioxidant activity DPPH, ABTS, and Folin–Ciocalteu methods of betulin (compound 1) and its derivatives (compounds 2–11). Skin permeability and accumulation associated with compounds 1 and 8 were also examined. Identification of the obtained products (compound 2–11) and betulin isolated from plant material was based on the analysis of 1H- NMR and 13C-NMR spectra. The partition coefficient was calculated to determine the lipophilicity of all compounds. In the next stage, the penetration through pig skin and its accumulation in the skin were evaluated of ethanol vehicles containing compound 8 (at a concentration of 0.226 mmol/dm3), which was characterized by the highest antioxidant activity. For comparison, penetration studies of betulin itself were also carried out. Poor solubility and the bioavailability of pure compounds are major constraints in combination therapy. However, we observed that the ethanol vehicle was an enhancer of skin permeation for both the initial betulin and compound 8. The betulin 8 derivative showed increased permeability through biological membranes compared to the parent betulin. The paper presents the transformation of polycyclic compounds to produce novel derivatives with marked antioxidant activities and as valuable intermediates for the pharmaceutical industry. Moreover, the compounds contained in the vehicles, due to their mechanism of action, can have a beneficial effect on the balance between oxidants and antioxidants in the body, minimizing the effects of oxidative stress. The results of this work may contribute to knowledge regarding vehicles with antioxidant potential. The use of vehicles for this type of research is therefore justified.  相似文献   
7.

New methods of obtaining products containing enzymes reduce the costs associated with obtaining them, increase the efficiency of processes and stabilize the created biocatalytic systems. In the study a catalytic system containing the enzyme α-amylase immobilized on ZnO nanoparticle and Fe3O4 nanoparticles was created. The efficiency of the processes was obtained with variables: concentrations of enzymes, temperatures and times, to define the best conditions for running the process, for which were determined equilibrium and kinetics of adsorption. The most effective parameters of α-amylase immobilization on metal oxides were determined, obtaining 100.8 mg/g sorption capacity for ZnO and 102.9 mg/g for Fe3O4 nanoparticles. Base on the best parameters, ZnO-α-amylase was investigated as an antimicrobial agent and Fe3O4-α-amylase was tested as a catalyst in the process of starch hydrolysis. As a result of the conducted experiments, it was found that α-amylase immobilized on Fe3O4 nanoparticles maintained high catalytic activity (the reaction rate constant KM?=?0.7799 [g/dm3] and the maximum reaction rate Vmax?=?8.660 [g/(dm3min)]).

  相似文献   
8.
Bladder cancer (BC) is a common malignancy of the urinary system and a leading cause of death worldwide. In this work, untargeted metabolomic profiling of biological fluids is presented as a non-invasive tool for bladder cancer biomarker discovery as a first step towards developing superior methods for detection, treatment, and prevention well as to further our current understanding of this disease. In this study, urine samples from 24 healthy volunteers and 24 BC patients were subjected to metabolomic profiling using high throughput solid-phase microextraction (SPME) in thin-film format and reversed-phase high-performance liquid chromatography coupled with a Q Exactive Focus Orbitrap mass spectrometer. The chemometric analysis enabled the selection of metabolites contributing to the observed separation of BC patients from the control group. Relevant differences were demonstrated for phenylalanine metabolism compounds, i.e., benzoic acid, hippuric acid, and 4-hydroxycinnamic acid. Furthermore, compounds involved in the metabolism of histidine, beta-alanine, and glycerophospholipids were also identified. Thin-film SPME can be efficiently used as an alternative approach to other traditional urine sample preparation methods, demonstrating the SPME technique as a simple and efficient tool for urinary metabolomics research. Moreover, this study’s results may support a better understanding of bladder cancer development and progression mechanisms.  相似文献   
9.
Yeast plays a key role in the production of fermented foods and beverages, such as bread, wine, and other alcoholic beverages. They are able to produce and release from the fermentation environment large numbers of volatile organic compounds (VOCs). This is the reason for the great interest in the possibility of adapting these microorganisms to fermentation at reduced temperatures. By doing this, it would be possible to obtain better sensory profiles of the final products. It can reduce the addition of artificial flavors and enhancements to food products and influence other important factors of fermented food production. Here, we reviewed the genetic and physiological mechanisms by which yeasts adapt to low temperatures. Next, we discussed the importance of VOCs for the food industry, their biosynthesis, and the most common volatiles in fermented foods and described the beneficial impact of decreased temperature as a factor that contributes to improving the composition of the sensory profiles of fermented foods.  相似文献   
10.
There is a need for improved and generally applicable scoring functions for fragment-based approaches to ligand design. Here, we evaluate the performance of a computationally efficient model for inhibitory activity estimation, which is composed only of multipole electrostatic energy and dispersion energy terms that approximate long-range ab initio quantum mechanical interaction energies. We find that computed energies correlate well with inhibitory activity for a compound series with varying substituents targeting two subpockets of the binding site of Trypanosoma brucei pteridine reductase 1. For one subpocket, we find that the model is more predictive for inhibitory activity than the ab initio interaction energy calculated at the MP2 level. Furthermore, the model is found to outperform a commonly used empirical scoring method. Finally, we show that the results for the two subpockets can be combined, which suggests that this simple nonempirical scoring function could be applied in fragment–based drug design.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号