首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
化学   6篇
数学   1篇
物理学   14篇
  2020年   1篇
  2018年   2篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1974年   1篇
排序方式: 共有21条查询结果,搜索用时 343 毫秒
1.
2.
3.
ABSTRACT

We study the structure and liquid-crystalline phase behaviour of a model of confined non-convex circular soft-repulsive nanorings in a planar slit geometry using molecular-dynamics simulation. The separation distance between the structureless parallel soft-repulsive walls is made large enough to allow for the formation of a distinct bulk phase in the central region of the box which is in coexistence with the adsorbed fluid thus allowing the analysis of single-wall effects. As the density of the particles is increased, the fluid adsorbs (wets) onto the planar surfaces leading to the formation of well-defined smectic-A layers with a spacing proportional to the diameter of the rings. An analysis of the nematic order parameter at distances perpendicular to the surface reveals that the particles in each layer exhibit anti-nematic behaviour and planar (edge-on) anchoring relative to the short symmetry axis of the rings. This behaviour is in stark contrast to the behaviour observed in convex disc-like particles that have the tendency to form nematic (discotic) structures with homeotropic (face-on) anchoring. The smectic phases formed by nanorings in the bulk and under confinement are characterised by the formation of low-density layered liquid-crystalline states with large voids, referred to here as lacuna smectic phases. In contrast to what is typically found for confined liquid-crystalline systems involving convex particles, no apparent biaxiality is found for nanorings in planar confinement. We argue that formation of the low-density lacuna smectic layers with planar anchoring is a consequence of the non-convex shape of the circular rings that allow for interpenetration between the particles as observed for nanorings under bulk conditions [C. Avendaño, G. Jackson, E.A. Müller and F.A. Escobedo, Proc. Natl. Acad. Sci. U.S.A. 113, 9699 (2016); H.H. Wensink and C. Avendaño, Phys. Rev. E 94, 062704 (2016)].  相似文献   
4.
5.
The results of a series of measurements on the broadening and shifting of the J = 0 → 1 absorption line of CH3Cl by foreign gases are reported.  相似文献   
6.
7.
We study isotropic-isotropic and isotropic-nematic phase transitions of fluid mixtures containing hard spherocylinders (HSC) and added non-adsorbing ideal polymer chains using scaled particle theory (SPT). First, we investigate isotropic-nematic (I -N phase coexistence using SPT in the absence of polymer. We compare the results obtained using a Gaussian form of the orientational distribution function (ODF) to minimize the free energy versus minimizing numerically. We find that formal numerical minimization gives results that are much closer to computer simulation results. In order to describe mixtures of HSC plus ideal chains we studied the depletion of ideal chains around a HSC. We analyze the density profiles of ideal chains near a hard cylinder and find the depletion thickness δ is a function of the ratio of the polymer's radius of gyration Rg and the cylinder radius Rc. Our results are compared with a common approximation in which the depletion thickness is taken equal to the radius of gyration of the polymer chain. We incorporate the correct depletion thickness into SPT and find that for R g/R c < 1.56 using ideal chains gives phase transitions at smaller polymer concentrations, whereas for R g/R c > 1.56 , which is a common experimental situation, the phase transitions are found at larger polymer concentrations with respect to δ = R g . The differences are significant, especially for R gR c , so we can conclude it is essential to take into account the properties of ideal polymer chains and the resulting depletion near a cylinder. Finally, we present phase diagrams for rod-polymer mixtures which could be realized under experimental conditions.  相似文献   
8.
Phase separation of a polydisperse colloidal dispersion implies size fractionation. An application of this effect is given by size-selective purification procedures associated with the colloidal synthesis of so-called monodisperse nanoparticles. We used electron microscopy to determine detailed particle size distributions of coexisting colloidal fluid phases containing highly polydisperse iron oxide nanoparticles with a log-normal distribution (sigma = 0.54 for the total system). Analysis of N approximately 10000 particles per phase yields the first five statistical moments of the distributions. Within experimental error, the interdependence of the statistical moments is in quantitative agreement with the "universal law of fractionation" proposed by Evans, Fairhurst, and Poon [Phys. Rev. Lett. 1998, 81, 1326], even though the theory was derived in the limit of slight polydispersity.  相似文献   
9.
10.
We study the stability of inhomogeneous liquid crystalline states in systems of monodisperse, stiff, charged rods. By means of a bifurcation analysis applied to the Onsager free energy for charged rods in strongly nematic states, we investigate nematic-smectic and nematic-columnar instabilities as a function of the Debye screening length kappa(-1). While the nematic-smectic transition clearly preempts the nematic-columnar one in the regime of strong screening (i.e., small kappa(-1)) a marked stability of hexagonal columnar order is observed at larger screening lengths. The theoretical results are substantiated by Brownian dynamics computer simulation results based on the Yukawa site model. Our findings connect to experiments on tobacco mosaic virus rods, in particular, but might be relevant for soft rodlike mesogens in strong external directional fields in general.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号