首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
化学   9篇
力学   1篇
数学   1篇
物理学   6篇
  2022年   1篇
  2013年   1篇
  2011年   1篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  1998年   1篇
  1956年   2篇
排序方式: 共有17条查询结果,搜索用时 234 毫秒
1.
Polyaniline nanofibers: facile synthesis and chemical sensors   总被引:33,自引:0,他引:33  
Polyaniline nanofibers with uniform diameters between 30 and 50 nm can be made in bulk quantities through a facile aqueous/organic interfacial polymerization method at ambient conditions. The nanofibers have lengths varying from 500 nm to several micrometers and form interconnected networks. Thin films made of the nanofibers have superior performance in both sensitivity and time response to vapors of acid (HCl) and base (NH3).  相似文献   
2.
3.
Virji S  Kaner RB  Weiller BH 《Inorganic chemistry》2006,45(26):10467-10471
Copper acetate and related metal salt films react directly with hydrogen sulfide at room temperature to form metal sulfides, resulting in conductivity changes as large as 108. The observed changes in conductivity are related to the solubility product constant (Ksp) and the difference in conductivity between the metal salt and the resulting metal sulfide. A smaller Ksp indicates a more stable metal sulfide and, therefore, greater metal salt reactivity. Polyaniline nanofiber/metal salt composites were also examined and show metal sulfide conversion with changes in resistance up to 106. The direct electrical measurement of the conversion of metal salt to metal sulfide has the potential to be the basis of a new type of sensitive, thin-film chemical sensor.  相似文献   
4.
The conjugated polymer polyaniline is a promising material for sensors, since its conductivity is highly sensitive to chemical vapors. Nanofibers of polyaniline are found to have superior performance relative to conventional materials due to their much greater exposed surface area. A template-free chemical synthesis is described that produces uniform polyaniline nanofibers with diameters below 100 nm. The interfacial polymerization can be readily scaled to make gram quantities. Resistive-type sensors made from undoped or doped polyaniline nanofibers outperform conventional polyaniline on exposure to acid or base vapors, respectively. The nanofibers show essentially no thickness dependence to their sensitivity.  相似文献   
5.
Hydrogen sensors based on conductivity changes in polyaniline nanofibers   总被引:2,自引:0,他引:2  
Hydrogen causes a reversible decrease in the resistance of a thin film of camphorsulfonic acid doped polyaniline nanofibers. For a 1% mixture of hydrogen in nitrogen, a 3% decrease in resistance is observed (DeltaR/R = -3%). The hydrogen response is completely suppressed in the presence of humidity. In contrast, oxygen does not inhibit the hydrogen response. A deuterium isotope effect on the sensor response is observed in which hydrogen gives a larger response than deuterium: (DeltaR/R)H/(DeltaR/R)D = 4.1 +/- 0.4. Mass sensors using nanofiber films on a quartz crystal microbalance also showed a comparable deuterium isotope effect: DeltamH/DeltamD = 2.3 +/- 0.2 or DeltanH/DeltanD = 4.6 +/- 0.4 on a molar basis. The resistance change of polyaniline nanofibers is about an order of magnitude greater than conventional polyaniline, consistent with a porous, high-surface-area nanofibrillar film structure that allows for better gas diffusion into the film. A plausible mechanism involves hydrogen bonding to the amine nitrogens along the polyaniline backbone and subsequent dissociation. The inhibitory effect of humidity is consistent with a stronger interaction of water with the polyaniline active sites that bind to hydrogen. These data clearly demonstrate a significant interaction of hydrogen with doped polyaniline and may be relevant to recent claims of hydrogen storage by polyaniline.  相似文献   
6.
A template‐free method for the production of polypyrrole nanofibers is presented. By adding a small amount of bipyrrole into the oxidative polymerization of pyrrole, a drastic change in the morphology of the observed material is observed from large, granular particles to nanofibrils with an average diameter of 20 nm. This simple procedure allows for the production of polypyrrole nanofibers without the presence of surfactants or other structural directing agents. The polypyrrole nanofibers can form stable water dispersions which can be cast into films of sufficient quality to function as chemical sensors for analytes such as ammonia.

  相似文献   

7.
Growth of graphene on copper (100) single crystals by chemical vapor deposition has been accomplished. The atomic structure of the graphene overlayer was studied using scanning tunneling microscopy. A detailed analysis of moire? superstructures present in the graphene topography reveals that growth occurs in a variety of orientations over the square atomic lattice of the copper surface. Transmission electron microscopy was used to elucidate the crystallinity of the grown graphene. Pristine, defect-free graphene was observed over copper steps, corners, and screw dislocations. Distinct protrusions, known as "flower" structures, were observed on flat terraces, which are attributed to carbon structures that depart from the characteristic honeycomb lattice. Continuous graphene growth also occurs over copper adatoms and atomic vacancies present at the single-crystal surface. The copper atom mobility within vacancy islands covered with suspended graphene sheets reveals a weak graphene-substrate interaction. The observed continuity and room-temperature vacancy motion indicates that copper mobility likely plays a significant role in the mechanism of sheet extension on copper substrates. Lastly, these results suggest that the quality of graphene grown on copper substrates is ultimately limited by nucleation at the surface of the metal catalyst.  相似文献   
8.
Previous studies provide evidence that atherosclerosis develops in vascular regions exposed to low wall shear stress (WSS) and high oscillatory shear index (OSI). 4D flow MRI was analyzed in 70 stroke patients with complex plaques (≥ 4 mm thickness, ulcerated or superimposed thrombi) and in 12 young healthy volunteers. The segmental distribution of peak systolic WSSsystole and OSI was quantified in analysis planes positioned directly at the location of 140 complex plaques found in the 70 patients. In addition, WSSsystole and OSI were evaluated in 8 standard analysis planes distributed along the aorta. Complex plaques were predominantly found at the inner curvature of the aortic arch and of the descending aorta. High OSI was co-located with the segments mostly affected by complex plaque while WSSsystole demonstrated a homogenous distribution. In standard analysis planes, patients demonstrated significantly (p < 0.01) altered distribution of wall parameters compared to volunteers (reduced WSSsystole in 91% of aortic wall segments, increased OSI in 48% of segments). OSI distribution was asymmetric with higher values at the inner curvature of the aorta. While WSS and OSI showed expected changes in patients compared to healthy controls, their distribution pattern at complex plaques indicated a more complex and heterogeneous relationship than previously anticipated.  相似文献   
9.
PURPOSE: To evaluate the feasibility of an optimized bright blood MRI protocol at 3 T in combination with contrast agent administration for the detection and characterization of aortic high-risk plaques for the improved workup of acute stroke patients. MATERIALS AND METHODS: ECG synchronized T1-weighted 3D gradient echo MRI was performed in 45 acute stroke patients. Data were acquired with high near isotropic spatial resolution (approximately 1 mm(3)) covering the entire thoracic aorta. To compensate for breathing and vessel motion artifacts, images were collected using respiratory navigator gating in combination with short diastolic data acquisition windows adjusted on a patient-by-patient basis. In patients with aortic plaques > or =3 mm in thickness, gadolinium contrast agent was administered and both pre- and post-contrast T1-weighted 3D measurements with identical vessel coverage were performed. RESULTS: Bright blood 3D MRI detected 33 high-risk plaques with an average maximum plaque thickness of 4.2+/-1.0 mm in 23 of 45 acute stroke patients. The availability of pre- and post-contrast images acquired within the same session enhanced the identification of calcified plaque components in 77% of all analyzed plaques: post-contrast MRI clearly improved the delineation of hypointense plaque cores in 23 of 30 cases and assisted in the classification of core shape and of core fraction. CONCLUSION: 3D bright blood MRI at 3 T was feasible for the detection of aortic high-risk sources and may help to improve the detection of causes of cerebral embolism in acute stroke patients.  相似文献   
10.

Vacuum chambers used in high-energy particle accelerator experiments are conventionally made of bulk beryllium, which shows significant drawbacks due to cost and toxicity. An alternative solution could be to develop chambers made of polymer-based composites. Since these materials exhibit high outgassing not compatible with an ultra-high vacuum environment, a suitable gas-tight coating is required. Cold spray deposition of aluminum can be a solution, provided that the coating behaves as a perfect vacuum barrier. Porosity, especially percolating porous networks, is key to coating gas tightness issues. This work addresses the relationship between porosity and gas-tightness in cold spray coatings. To do so, coatings with different porosity were achieved playing with powder morphology, composition, and process parameters. Their gas tightness was evaluated by helium leak tests. Classical microscopy, being essentially a 2D analysis, is strongly limited when dealing with 3D properties as porosity percolation. For this reason, 3D X-ray microtomography images of coatings were obtained and treated by image analysis methods: pores were compared in terms of size and shape. Overall porosity properties, including percolation and a homogeneity criterion, were also investigated. Percolating porosity was highlighted for several samples which showed poor gas-tightness properties. The permeability of percolating pore structures was then numerically computed by a fast Fourier transform-based method, to quantify the mass flow through the coating. Results of those computations were finally compared to experimental coating leak rate measurements, in an effort to elucidate the link between gas tightness and morphology of the pore space.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号