首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   5篇
化学   41篇
力学   1篇
物理学   3篇
  2023年   2篇
  2022年   2篇
  2021年   3篇
  2020年   8篇
  2019年   8篇
  2018年   1篇
  2017年   2篇
  2016年   4篇
  2015年   6篇
  2013年   4篇
  2012年   1篇
  2011年   1篇
  2007年   2篇
  2006年   1篇
排序方式: 共有45条查询结果,搜索用时 93 毫秒
1.
Trialkoxysilanes (or silanes) have emerged as a very promising alternative for chromates in metal finishing industries. Compared to the conventional chromating processes, the major merits of silane-based surface treatments include: eco-compliance, easy-control processing, comparable corrosion protection of metals as well as paint adhesion to a variety of topcoats. In this overview paper, we report the recent status of silane studies including results of corrosion performance tests, the mechanism of corrosion protection of metals by silanes and the themal stabilities of silane films. We also address the new fields that we are beginning to explore such as nano-structured silane films, “self-healing” silane films, and “super-primers”.  相似文献   
2.
We present the results of acid–base experiments performed at the single ion (H+ or OH) limit in ∼6 aL volume nanopores incorporating electrochemical zero-mode waveguides (E-ZMWs). At pH 3 each E-ZMW nanopore contains ca. 3600H+ ions, and application of a negative electrochemical potential to the gold working electrode/optical cladding layer reduces H+ to H2, thereby depleting H+ and increasing the local pH within the nanopore. The change in pH was quantified by tracking the intensity of fluorescein, a pH-responsive fluorophore whose intensity increases with pH. This behavior was translated to the single ion limit by changing the initial pH of the electrolyte solution to pH 6, at which the average pore occupancy 〈npore ∼3.6H+/nanopore. Application of an electrochemical potential sufficiently negative to change the local pH to pH 7 reduces the proton nanopore occupancy to 〈npore ∼0.36H+/nanopore, demonstrating that the approach is sensitive to single H+ manipulations, as evidenced by clear potential-dependent changes in fluorescein emission intensity. In addition, at high overpotential, the observed fluorescence intensity exceeded the value predicted from the fluorescence intensity-pH calibration, an observation attributed to the nucleation of H2 nanobubbles as confirmed both by calculations and the behavior of non-pH responsive Alexa 488 fluorophore. Apart from enhancing fundamental understanding, the approach described here opens the door to applications requiring ultrasensitive ion sensing, based on the optical detection of H+ population at the single ion limit.

Visualizing dynamic change in the number of protons during electroreduction of protons in attoliter volume zero-mode waveguides.  相似文献   
3.

Co–Fe bimetallic nanoparticles-affixed polyvinylidene fluoride-co-hexafluoropropylene (PVdF-HFP) nanofiber membrane is fabricated using the electrospinning and chemical reduction techniques. The semicrystalline polymeric backbone decorated with the highly crystalline Co–Fe bimetallic nanoparticles enunciates the mechanical integrity, while the incessant and swift electron mobility is articulated with the consistent dissemination of bimetallic nanoparticles on the intersected and multi-layered polymeric nanofibers. The diffusion and adsorption of glucose are expedited in the extended cavities and porosities of as-formulated polymeric nanofibers, maximizing the glucose utilization efficacy, while the uniformly implanted Co4+/Fe3+ active centers on PVdF-HFP nanofibers maximize the electrocatalytic activity toward glucose oxidation under alkaline regimes. Thus, the combinative sorts including nanofiber and nanocomposite strategies of PVdF-HFP/Co–Fe membrane assimilate the enzyme-less electrochemical glucose detection concerts of high sensitivity (375.01 μA mM?1 cm?2), low limit of detection (0.65 μm), and wide linear range (0.001 to 8 mM), outfitting the erstwhile enzyme-less glucose detection reports. Additionally, the endowments of high selectivity and real sample glucose-sensing analyses of PVdF-HFP/Co–Fe along with the binder-less and free-standing characteristics construct the state-of-the-art paradigm for the evolution of affordable enzyme-less electrochemical glucose sensors.

  相似文献   
4.
Herein we present a new approach for the complete removal of CrVI species, through reduction of CrVI to CrIII, followed by adsorption of CrIII. Reduction of chromium from water is an important challenge, as CrIV is one of the most toxic substances emitted from industrial processes. Chitosan (CS) thin films were developed on plain polysulfone (PSf) and PSf/TiO2 membrane substrates by a temperature-induced technique using polyvinyl alcohol as a binder. Structure property elucidation was carried out by X-ray diffraction, microscopy, spectroscopy, contact angle measurement, and water uptake studies. The increase in hydrophilicity followed the order: PSf < PSf/TiO2 < PSf/TiO2/CS membranes. Use of this thin-film composite membrane for chromium removal was investigated with regards to the effects of light and pH. The observations reveal 100 % reduction of CrVI to CrIII through electrons and protons donated from OH and NH2 groups of the CS layer; the reduced CrIII species are adsorbed onto the CS layer via complexation to give chromium-free water.  相似文献   
5.
Circulating nucleic acids, such as short interfering RNA (siRNA), regulate many biological processes; however, the mechanism by which these molecules enter the cell is poorly understood. The role of extracellular‐matrix‐derived polymers in binding siRNAs and trafficking them across the plasma membrane is reported. Thermal melting, dynamic light scattering, scanning electron microscopy, and computational analysis indicate that hyaluronic acid can stabilize siRNA via hydrogen bonding and Van der Waals interactions. This stabilization facilitated HA size‐ and concentration‐dependent gene silencing in a CD44‐positive human osteosarcoma cell line (MG‐63) and in human mesenchymal stromal cells (hMSCs). This native HA‐based siRNA transfection represents the first report on an anionic, non‐viral delivery method that resulted in approximately 60 % gene knockdown in both cell types tested, which correlated with a reduction in translation levels.  相似文献   
6.
The cooperative nature of protein substructure and internal motion is a critical aspect of their functional competence about which little is known experimentally. NMR relaxation is used here to monitor the effects of high pressure on fast internal motion in the protein ubiquitin. In contrast to the main chain, the motions of the methyl-bearing side chains have a large and variable pressure dependence. Within the core, this pressure sensitivity correlates with the magnitude of motion at ambient pressure. Spatial clustering of the dynamic response to applied hydrostatic pressure is also seen, indicating localized cooperativity of motion on the sub-nanosecond time scale and suggesting regions of variable compressibility. These and other features indicate that the native ensemble contains a significant fraction of members with characteristics ascribed to the recently postulated "dry molten globule". The accompanying variable side-chain conformational entropy helps complete our view of the thermodynamic architecture underlying protein stability, folding, and function.  相似文献   
7.
A new family of t‐butyl substituted chromium(III) chloride complexes ( Cr1 – Cr6 ), bearing 2‐(1‐(2,6‐dibenzhydryl‐4‐t‐butylphenylimino)ethyl)‐6‐(1‐(arylimino)ethyl)pyridine (aryl = 2,6‐Me2C6H3 Cr1 , 2,6‐Et2C6H3 Cr2 , 2,6‐i‐Pr2C6H3 Cr3 , 2,4,6‐Me3C6H2 Cr4 and 2,6‐Et2‐4‐MeC6H2 Cr5 ) or 2,6‐bis(1‐(2,6‐dibenzhydryl‐4‐t‐butylphenylimino)ethyl)pyridine ( Cr6 ), has been synthesized by the reaction of CrCl3·6H2O in good yield with the corresponding ligands ( L1 – L6 ), respectively. The molecular structures of Cr2 and Cr6 were characterized by X‐ray diffraction highlighted a distorted octahedral geometry with the coordinated N,N,N ligand and three bonded chlorides around the metal center. On activation with modified methylaluminoxane or triisobutyl aluminum, most of the chromium precatalysts exhibit good activities toward ethylene polymerization and produce linear polyethylenes with high‐molecular weight. In addition, an in‐depth catalytic evaluation of Cr2 was conducted to investigate how cocatalyst type and amount, reaction temperature, and run time affect the catalytic activities and polymer properties. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 1049–1058  相似文献   
8.
Chalcones and their analogs have been an area of great interest in recent years. Numerous research papers have been published, and chalcones continue to show promise for new drug investigations. Researchers have explored new approaches for the synthesis of chalcone derivatives, which have revealed an array of pharmacological and biological effects. These chalcone derivatives have shown important antimicrobial, antifungal, anti-mycobacterial, antimalarial, antiviral, anti-inflammatory, antioxidant, antileishmanial anti-tumor, and anticancer properties. This review highlights the synthesis and pharmacological properties of chalcone derivatives.  相似文献   
9.
10.
We report four new complexes based on a {LnIII6} wheel structure, three of which possess a net toroidal magnetic moment. The four examples consist of {TbIII6} and {HoIII6} wheels, which are rare examples of non DyIII based complexes possessing a toroidal magnetic ground state, and a {DyIII6} complex which improves its toroidal structure upon lowering the crystallographic symmetry from trigonal (R ) to triclinic (P ). Notably the toroidal moment is lost for the trigonal {ErIII6} analogue. This suggests the possibility of utilizing the popular concept of oblate and prolate electron density of the ground state MJ levels of lanthanide ions to engineer toroidal moments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号