首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   1篇
化学   7篇
物理学   2篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2017年   4篇
  2015年   1篇
  2013年   1篇
排序方式: 共有9条查询结果,搜索用时 234 毫秒
1
1.
Journal of Solid State Electrochemistry - Herein, we report the synthesis of ZnO nanorod films onto FTO (fluorine-doped tin oxide) substrates using the solution-processed electrodeposition method....  相似文献   
2.
3.
Research on low-temperature polar bent-core nematogens having lower molecular weight has gathered appreciable momentum by virtue of their significance in potential applications. However, the lack of availability and easy-to-perform synthesis processes appears to be the bottleneck towards their fabrication and thereby limiting their possible device applications. Hence, we have designed a new class of achiral symmetrical three-ring-based-bent shaped molecules incorporating an imine and ester linkage at the molecular bend with highly polar nitro/cyano terminal moiety exhibiting low-temperature nematic mesmorphism. The occurrence of disordered nematic mesomorphism has been confirmed by optical texture, differential scanning calorimetry scan and X-ray diffraction measurement. Dielectric spectroscopy and electro-optical investigation has also been carried out intending towards the potential applicability of the materials. Density functional theory analyses at the molecular level provide valuable information regarding the formation of the nematic mesophase and various parameters of the molecular spatial arrangement. Polarising optical microscopy study reveals the easy of alignment of these types of polar bent-core materials upon glass surface suitable for liquid-crystal-based sensing applications. Formation of mesophase with such a small bent molecule is rather difficult but we have successfully demonstrated the existence of disordered nematic mesomorphism at relatively low temperature.  相似文献   
4.
5.
Journal of Solid State Electrochemistry - Indium selenide (γ-In2Se3) films were prepared using RF magnetron sputtering. Influence of deposition time on structural, optical, morphological, and...  相似文献   
6.
We report the synthesis and characterization of a new class of achiral three‐ring bent‐core compounds with an amide and ester linkage at the molecular bend, which are shown to exhibit nematic/phases in wide temperature ranges around room temperature (RT) and undulated SmC phases below RT. In contrast to previous studies, the compounds reported in this Communication show a true RT nematic phase with fluid physical appearance. They show strong photoluminescence in the mesophase and are found to display a one‐dimensional array of intermolecular hydrogen bonding. Furthermore, the nematic phases exhibited by these compounds show a good homeotropic alignment that can be exploited in applications such as optics and sensing. Considering the scarcity of bent‐core materials exhibiting an RT nematic mesophase, this new class of materials is promising.  相似文献   
7.
Recently, an unprecedented observation of polar order, thermochromic behavior, and exotic mesophases in new chiral, bent-shaped systems with a −CH3 moiety placed at the transverse position of the central core was reported. Herein, a homologous series of compounds with even-numbered carbon chains from n=4 to 18 were synthesized, in which −Cl was substituted for −CH3 at the kink position and a drastic modification in the phase structure of the bent-shaped molecule was observed. An unusual stabilization of the cubic blue phase (BP) over a wide range of 16.4 °C has been witnessed. Two homologues in this series ( 1 -12 and 1 -14) exhibit an interesting phase sequence consisting of BPI/II, chiral nematic, twist grain boundary, smectic A, and smectic X (SmX) phases. The higher homologues ( 1 -16 and 1 -18) stabilize the SmX phase enantiotropically over the entire temperature range. Crystal structure analysis confirmed the bent molecular architecture, with a bent angle of 148°, and revealed the presence of two different molecular conformations in an asymmetric unit of compound 1 -4. A DFT study corroborated that the −Cl moiety at the central core of the molecule led to an increase in the dipole moment along the transverse direction, which, in turn, facilitated the unusual stabilization of frustrated structures. Crystal polymorphism has been evidenced in three homologues ( 1 -10, 1 -12, and 1 -14) of the series. On the application of mechanical pressure through grinding, compound 1 -10 transformed from a bright yellow crystalline solid to a dark orange–green amorphous solid, which reversed upon dropwise addition of dichloromethane, indicating reversible mechanochromism in this class of compounds. In addition, excellent thermochromic behavior has been observed for compound 1 -10 with a controlled temperature–color combination.  相似文献   
8.
The effects of high electronic energy deposition on the structure, surface topography, optical property and photoelectrochemical behavior of barium titanate thin (BaTiO3) films have been investigated by irradiating films with 120 MeV Ag9+ ions at different ion fluences in the range of 1 × 1011–3 × 1012 ions cm?2. Barium titanate thin films were deposited on indium tin oxide-coated glass substrate by sol–gel spin coating method. The structure of the film was crystalline with tetragonal phase. Surface topography was studied by atomic force microscopy detailing the values of roughness of the films. Maximum photocurrent density of 1.78 mA cm?2 at 0.4 V/SCE and applied bias photon-to-current efficiency (ABPE) of 0.91% was observed for BaTiO3 film irradiated at 1 × 1011 ions cm?2.  相似文献   
9.
We report synthesis and characterization of ultrathin cobalt sulfide nanoflakes (CoSx-NFs) sensitized zinc oxide nanorods (Z-NRs) array based thin films and their implementation as photoanodes for photoelectrochemical (PEC) splitting of water. Cobalt sulfide nanoflakes-sensitized zinc oxide nanorods (CoSx-NFs/Z-NRs) array based photoanodes were grown on fluorine-doped tin oxide substrate by a simple and versatile electrodeposition method. Maximum conversion efficiency of PEC cell was found 0.37% with a photocurrent density of 0.48 mA/cm2 at a bias of 0.3 V/SCE in CoSx-NFs/Z-NRs-15 (loading of CoSx-NFs on Z-NRs by cyclic voltammetry for 15 cycles) based photoanodes. The photo-activity is 2.7 times larger than that of Z-NRs array-based photoanode. Experimental results reveal that sensitization by CoSx-NFs causes red shift in the band gap energy of Z-NRs photoanode. Lower band gap energy, suitable band redox potential, and marked absorption in visible light make CoSx-NFs/Z-NRs-15 thin films a promising material for photoanodes in PEC cells. A detailed analysis using X-ray diffraction (XRD), UV-Visible (UV-Visible) spectroscopy, field emission scanning electron microscope (FE-SEM), energy-dispersive analysis (EDX), electron impedance spectroscopy (EIS), Mott-Schottky (MS) analysis, applied bias photon-to-current conversion efficiency (ABPE), and incident photon to current conversion efficiency (IPCE) measurements has been carried out to substantiate our observations. The excellent performance of CoSx-NFs/Z-NRs allows the composite photoelectrode to have many potential applications as a photoanode material for H2 production, nanoflakes-sensitized solar cells, and UV photodetector.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号