首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学   2篇
物理学   1篇
  2012年   1篇
  2010年   1篇
  2004年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
For the modification of medically useful biomaterials from bacterially synthesized cellulose, fleeces of Acetobacter xylinum have been produced in the presence of 0.5, 1.0, and 2.0% (m/v) carboxymethylcellulose (CMC), methylcellulose (MC), and poly(vinyl alcohol) (PVA), respectively, in the Hestrin-Schramm culture medium. The incorporation of the water-soluble polymers into cellulose and their influence on the structure, crystal modifications, and material properties are described. With IR and solid-state 13C NMR spectroscopy of the fleeces, the presence of the cellulose ethers and an increase in the amorphous parts of the cellulose modifications (NMR results) have been detected. The incorporation is represented by a higher product yield, too. As demonstrated by scanning electron microscopy, a porelike cellulose network structure forms in the presence of CMC and MC. This modified structure increases the water retention ability (expressed as the water content), the ion absorption capacity, and the remaining nitrogen-containing residues from the culture medium or bacteria cells. The water content of bacterial cellulose (BC) in the never dried state and the freeze-dried, reswollen state can be controlled by the CMC concentration in the culture solution. The freeze-dried, reswollen BC-CMC (2.0%) contains 96% water after centrifugation, whereas standard BC has only 73%. About 98% water is included in a BC-MC composite in the wet state, and about 93% is included in the reswollen state synthesized in the presence of 0.5, 1.0, or 2.0% MC. These biomaterial composites can be stored in the dried state and reswollen before use, reaching a higher water absorption than pure, never dried BC. The copper ion capacity of BC-CMC composites increases proportionally with the added amount of CMC. BC-CMC (0.5%) can absorb 3 times more copper ions than original BC. In the case of 0.5 and 1.0% PVA additions to the culture solution, this polymer cannot be detected in the cellulose fleeces after they are washed. Nevertheless the presence of PVA in the culture medium effects a decreased product yield, a retention of nitrogen-containing residues in the material during purification, a reduced water absorption ability, and a slightly higher copper ion capacity in comparison with original BC. The water content of freeze-dried, reswollen BC-PVA (0.5%) is only 62%. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 463–470, 2004  相似文献   
2.
We have designed and synthesized oligosubstituted bullvalenes 1 and 2 as adaptive molecules that can change their shapes in order to bind tightly to a suitable guest. By incorporation of a photolabile o-nitroveratryloxycarbonate (NVOC) group into bullvalenes 1 and 2, tightly binding species can be selectively isolated from a population of hundreds of interconverting structural isomers. Spontaneous strain-assisted Cope rearrangements allow these shape-shifting molecules to exist in a dynamic equilibrium of configurationally distinct valence isomers, as revealed by dynamic NMR and HPLC studies. When NVOC bullvalenes 1 and 2 were exposed to UV light, the cleavage of the NVOC group resulted in a mixture of static isomers of the corresponding bullvalone. Binding studies of NVOC bisporphyrin bullvalene 1 demonstrated that the dynamic isomeric equilibrium shifted in the presence of C(60), favoring configurations with more favorable binding affinities. Irradiation of a mixture of 1 and C(60) with UV light and isolation of the major static isomer yielded an isomer of bisporphyrin bullvalone with a binding affinity for C(60) that was ~2 times larger than that of the nonadapted isomer bisporphyrin bullvalone 41.  相似文献   
3.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号