首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
化学   5篇
  2023年   1篇
  2021年   1篇
  2016年   3篇
排序方式: 共有5条查询结果,搜索用时 562 毫秒
1
1.
The large internal surface areas and outstanding electrical and mechanical properties of graphene have prompted to blend graphene with NiCo2O4 to fabricate nanostructured NiCo2O4/graphene composites for supercapacitor applications. The use of graphene as blending with NiCo2O4 enhances the specific capacitance and rate capability and improves the cyclic performance when compared to the pristine NiCo2O4 material. Here, we synthesized two different nanostructured morphologies of NiCo2O4 on graphene sheets by solvothermal method. It has been suggested that the morphologies of oxides are greatly influenced by dielectric constant, thermal conductivity, and viscosity of solvents employed during the synthesis. In order to test this concept, we have synthesized nanostructured NiCo2O4 on graphene sheets by facile solvothermal method using N-methyl pyrrolidone and N,N-dimethylformamide solvents with water. We find that mixture of N-methyl pyrrolidone and water solvent favored the formation of nanonet-like NiCo2O4/graphene (NiCoO-net) whereas mixture of N,N-dimethylformamide and water solvent produced microsphere-like NiCo2O4/graphene (NiCoO-sphere). Electrochemical pseudocapacitance behavior of the two NiCo2O4/graphene electrode materials was studied by cyclic voltammetry, chronopotentiometry, and electrochemical impedance spectroscopy techniques. The supercapacitance measurements on NiCoO-net and NiCoO-sphere electrodes showed specific capacitance values of 1060 and 855 F g?1, respectively, at the current density of 1.5 A g?1. The capacitance retention of NiCoO-net electrode is 93 % while that of NiCoO-sphere electrode is 77 % after long-term 5000 charge-discharge cycles at high current density of 10 A g?1.  相似文献   
2.
We report the synthesis of NiCo2O4/reduced graphene oxide (NiCo2O4/rGO) hybrid hierarchical structures with unique nanonet and microsphere morphologies by organic polar solvent-assisted solvothermal method. The electrocatalytic oxygen evolution reaction (OER) activity of these materials is studied by cyclic voltammetry, linear sweep voltammetry and chronoamperometry methods in O2-saturated 0.1 M KOH solution. The NiCo2O4/rGO hybrid nanocomposite materials are found to be highly active electrocatalysts for OER at lower overpotentials. The nanonet and microsphere-like NiCo2O4/rGO catalysts require overpotentials of 0.450 and 0.530 V at a current density of 10 mA cm?2, and their corresponding Tafel slopes are 53 and 62 mV dec?1, which are much lower than values reported for non-precious electrocatalysts. Further, both NiCo2O4/rGO catalysts show good catalytic stability with current retention more than 92 % over long period of 15,000 s determined by chronoampirometry and at the end of 1000th cycle determined by linear sweep voltammetry. The enhanced OER activity of nanostructured NiCo2O4/rGO hybrid catalysts is attributed to synergistic interaction between rGO and NiCo2O4, which seems to be essential for maintaining the large contact area at the electrode-electrolyte interface, better mass, and charge transport and to minimize the aggregation of NiCo2O4 nanoparticles.  相似文献   
3.
A Pt‐V2O5/rGO ternary hybrid electrocatalyst was designed by using active vanadium(V) oxide (V2O5) nanorods and reduced graphene oxide (rGO) components. The V2O5 nanorods were synthesized by a simple polyol‐assisted solvothermal method and were incorporated uniformly onto rGO sheets by intermittent microwave heating. Subsequently, Pt nanoparticles (2–3 nm in size) were deposited over the V2O5/rGO composite by the conventional polyol reflux method. The electrocatalytic performance of the Pt‐V2O5/rGO ternary hybrid and bare Pt/rGO catalysts towards the oxidation of simple alcohols was evaluated in acidic media. The ternary hybrid catalyst exhibited higher electrocatalytic activity than bare Pt/rGO and also showed good stability. The higher electrocatalytic activity of the Pt‐V2O5/rGO ternary hybrid was attributed to a synergistic effect among the Pt, V2O5, and rGO components. In addition, oxygen‐containing species, such as OH groups, were generated on V2O5 at lower potentials. These groups were able to scavenge intermediate species such as COads on the Pt surfaces and helped to regenerate the active sites on the Pt surface more effectively for the routine alcohol oxidation reaction.  相似文献   
4.

A new type of three-dimensional (3D) oxy-phosphate materials are explored for the application of Li and Na batteries. The molybdenum tungsten oxy phosphate, MoWO3(PO4)2, was synthesized by solid-state method and evaluated for Li/Na insertion/de-insertion electrode material for the first time. The cell at charged state (vs. Li+/Li) showed a discharge capacity of 786 mAh g−1 within the voltage window of 0.3 V with amorphization of crystalline MoWO3(PO4)2 as observed from ex-situ powder XRD analysis. The structural integrity was revealed in this material, even with nearly more than 5 Li+ ions into the lattice, leading to the discharge capacity of 250 mAh g−1. The reversible charge/discharge behavior with insertion/de-insertion of 2.4 Li+ ions in the voltage range of 1.65 − 3.5 V resulted in 110 and 95 mAh g−1 at C/10 and C/5 rates, respectively. On the other hand, poor cycling performance was noticed for Na ion insertion and desertion, with a discharge capacity of 250 mAh/g within the voltage range of 0.3 − 3.5 V (vs. Na+/Na).

  相似文献   
5.
Journal of Solid State Electrochemistry - Mixed transition metal oxides/spinels are excellent energy storage electrode materials that can deliver sizeable specific capacitance, excellent cyclic...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号