首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学   3篇
物理学   1篇
  2011年   1篇
  2005年   2篇
  1979年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Abstract— In order to test the ability of phosphate groups to quench the tyrosine fluorescence in nucleic acid-protein complexes, we have studied the effect of several phosphate ions on the fluorescence of tyrosine derivatives. Mono and bianions (H2PO4 and HPO42–) which are good proton acceptors quenched the fluorescence of all the phenolic compounds studied except that of O -methyl tyrosine. With the other derivatives (tyrosine, N -acetyl tyrosinamide and lysyl-tyrosyl-α lysine) fluorescence inhibition was accompanied by the appearance of a long wavelength emission (345 nm) attributed to tyrosinate anions. The quenching of tyrosine emission was due to the deprotonation of the phenolic group promoted in the excited state by phosphate ions and leading to the weakly fluorescent tyrosinate ion. Mono and dianions of phosphate mono ester inhibited tyrosine fluorescence as did unesterified phosphates. However, phosphate diester did not have any effect on the fluorescence of tyrosine derivatives. We conclude from this study that in nucleic acid-protein complexes phosphate groups are not able to quench tyrosine fluorescence except at the end of polynucleotide chains. Since monoester and diester monoanions have a different behavior, we propose that quenching of tyrosine fluorescence by monoanions requires the formation of two hydrogen bonds. This complex cannot form with diesters which consequently do not quench tyrosine fluorescence.  相似文献   
2.
An important aspect in drug discovery is the early structural identification of the metabolites of potential new drugs. This gives information on the metabolically labile points in the molecules under investigation, suggesting structural modifications to improve their metabolic stability, and allowing an early safety assessment via the identification of metabolic activation products. From an analytical point of view, metabolite identification still remains a challenging task, especially for in vivo samples, in which they occur at trace levels together with high amounts of endogenous compounds. Here we describe a method, based on LC-ion trap tandem MS, for the rapid in vivo metabolite identification. It is based on the automatic, data-dependent acquisition of multiple product ion MS/MS scans, followed by a postacquisition search, within the entire MS/MS data set obtained, for specific neutral losses or marker ions in the tandem mass spectra of parent molecule and putative metabolites. One advantage of the method is speed, since it requires minimum sample preparation and all the necessary data can be obtained in one chromatographic run. In addition, it is highly sensitive and selective, allowing detection of trace metabolites even in the presence of a complex matrix. As an example of application, we present the studies of the in vivo metabolism of the compound MEN 15916 (1). The method allowed identification of monohydroxy ([M + H](+) = m/z 655), dihydroxy ([M + H](+) = m/z 671), and trihydroxy ([M + H](+) = m/z 687) metabolites, as well as some unexpected biotransformation products such as a carboxylic acid ([M + H](+) = m/z 669), a N-dealkylated metabolite ([M + H](+) = m/z 541), and its hydroxy-analog ([M + H](+) = m/z 557).  相似文献   
3.
A highly regio- and stereoselective synthesis of novel β,γ-disubstituted γ-lactams with either an anti or syn relative configuration was developed from readily available epoxide and aziridine acetates. The key steps include the regio- and diastereocontrolled nucleophilic ring-opening of these three-membered heterocycles followed by mild reductive cyclization of the γ-azido ester intermediate. The method was also extended to an asymmetric synthesis of (4R,5S)-4-hydroxy-5-phenylpyrrolidin-2-one from a chiral epoxide acetate. The main features of this versatile synthesis of functionalized γ-lactams include the involvement of inexpensive reagents and mild conditions together with high chemical efficiency.  相似文献   
4.
The evolution of the Si–SiO2 interface morphology of low-dose low-energy separation by implanted oxygen materials was investigated by transmission electron microscopy and atomic force microscopy. The Si–SiO2 interface morphology and the RMS roughness are strongly affected by the implantation conditions and the annealing process. Three main types of the domains including round, square, and pyramid shapes with the step-terrace structure were observed on the buried SiO2 surface. Round domains are observed in the early stage of the annealing process, while the square and pyramid domains are observed after the high temperature annealing. The mean RMS roughness decreases with increasing time and annealing temperature, while in the 1350 °C 4-h annealed samples, the mean RMS roughness decreases with either increasing the implantation dose or decreasing implantation energy. The scaling analysis shows that the Si–SiO2 interfaces were found to be self-affine on the short length scales with a roughness exponent above 0.50. Qualitative mechanisms of Si–SiO2 surface flattening are presented in terms of the variations of morphological features with the processing conditions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号