首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   220篇
  免费   2篇
化学   202篇
数学   1篇
物理学   19篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   5篇
  2015年   1篇
  2013年   1篇
  2012年   14篇
  2011年   20篇
  2010年   2篇
  2008年   26篇
  2007年   19篇
  2006年   22篇
  2005年   26篇
  2004年   6篇
  2003年   6篇
  2002年   5篇
  2001年   3篇
  2000年   6篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   5篇
  1991年   4篇
  1988年   1篇
  1987年   8篇
  1986年   4篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   5篇
  1972年   2篇
  1971年   1篇
排序方式: 共有222条查询结果,搜索用时 15 毫秒
1.
A simple formula is presented for calculating the approximate partition function of a hindered internal rotational mode of a polyatomic molecule. The formula gives useful accuracy over the whole range from harmonic oscillator to hindered rotator to free rotator.  相似文献   
2.
3.
In this paper we propose a method for carrying out variational transition state theory calculations without first obtaining a converged minimum-energy path (MEP). We illustrate the method in two ways, first of all by employing an unconverged MEP and secondly by using a dynamically optimized distinguished reaction path. Preliminary tests of the algorithm for the reactions OH+H2→H2O+H and C2H5→C2H4+H are very encouraging. Received: 22 January 1997 / Accepted: 11 March 1997  相似文献   
4.
We discuss molecule-frame and laboratory-frame symmetry-adapted formalisms for electron scattering by a spherical top. The molecule-frame formalism is based on the fixed-nuclear-orientation approximation, both for electronically elastic scattering by a vibrationally rigid molecule and also for the more general case where electronic excitation and vibrational degrees of freedom are included. The laboratory-frame formalism is based on the exact symmetries of the problem, which are carefully related to the approximate symmetries of the molecule-frame treatment. We present both the forward and backward transformations between the two representations.  相似文献   
5.
We have performed large-scale close coupling calculations of rotational-to-rotational energy transfer in HF? HF collisions for the realistic potential energy surface of Brobjer and Murrell. We employ up to 525 angular terms in the expansion of the potential and up to 440 coupled channels in the rotational-orbital basis set. The results for zero total angular momentum are well converged for relative translational energies up to over 0.6 eV, and they show extensive rotational excitation.  相似文献   
6.
We have calculated the interaction potential for HeI2 in T-shaped geometries using Hartree—Fock and Møller—Plesset third-order perturbation t  相似文献   
7.
The most widely used algorithm for Monte Carlo sampling of electronic transitions in trajectory surface hopping (TSH) calculations is the so-called anteater algorithm, which is inefficient for sampling low-probability nonadiabatic events. We present a new sampling scheme (called the army ants algorithm) for carrying out TSH calculations that is applicable to systems with any strength of coupling. The army ants algorithm is a form of rare event sampling whose efficiency is controlled by an input parameter. By choosing a suitable value of the input parameter the army ants algorithm can be reduced to the anteater algorithm (which is efficient for strongly coupled cases), and by optimizing the parameter the army ants algorithm may be efficiently applied to systems with low-probability events. To demonstrate the efficiency of the army ants algorithm, we performed atom-diatom scattering calculations on a model system involving weakly coupled electronic states. Fully converged quantum mechanical calculations were performed, and the probabilities for nonadiabatic reaction and nonreactive deexcitation (quenching) were found to be on the order of 10(-8). For such low-probability events the anteater sampling scheme requires a large number of trajectories ( approximately 10(10)) to obtain good statistics and converged semiclassical results. In contrast by using the new army ants algorithm converged results were obtained by running 10(5) trajectories. Furthermore, the results were found to be in excellent agreement with the quantum mechanical results. Sampling errors were estimated using the bootstrap method, which is validated for use with the army ants algorithm.  相似文献   
8.
Our recently proposed scheme for including aqueous solvation free energies in parameterized NDDO SCF models is extended to the Parameterized Model 3 semiempirical Hamiltonian. The solvation model takes accurate account of the hydrophobic effect for hydrocarbons, as well as electric polarization of the solvent, the free energy of cavitation, and dispersion interactions. Eight heteroatoms are included (along with H and C), and the new model is parameterized accurately for the water molecule itself, which allows meaningful treatments of specifically hydrogen bonded water molecules. The unphysical partial charges on nitrogen atoms predicted by the Parameterized Model 3 Hamiltonian limit the accuracy of the predicted solvation energies for some compounds containing nitrogen, but the model may be very useful for other systems, especially those for which PM3 is preferred over AM1 for the solute properties of the particular system under study. © 1992 by John Wiley & Sons, Inc.  相似文献   
9.
A semiclassical trajectory method, called the self-consistent decay of mixing (SCDM) method, is presented for the treatment of electronically nonadiabatic dynamics. The SCDM method is a modification of the semiclassical Ehrenfest (SE) method (also called the semiclassical time-dependent self-consistent-field method) that solves the problem of unphysical mixed final states by including decay-of-mixing terms in the equations for the evolution of the electronic state populations. These terms generate a force, called the decoherent force (or dephasing force), that drives the electronic component of each trajectory toward a pure state. Results for several mixed quantum-classical methods, in particular the SCDM, SE, and natural-decay-of-mixing methods and several trajectory surface hopping methods, are compared to the results of accurate quantum mechanical calculations for 12 cases involving five different fully dimensional triatomic model systems. The SCDM method is found to be the most accurate of the methods tested. The method should be useful for the simulation of photochemical reactions.  相似文献   
10.
We have calculated reaction rates for the reactions O + HD → OH + D and O + DH → OD + H using improved canonical variational transition state theory and least-action ground-state transmission coefficients with an ab initio potential energy surface. The kinetic isotope effects are in good agreement with experiment. The optimized tunneling paths and properties of the variational transition states and the rate enhancement for vibrationally excited reactants are also presented and compared with those for the isotopically unsubstituted reaction O + H2 → OH + H. The thermal reactions at low and room temperature are predicted to occur by tunneling at extended configurations, i.e., to initiate early on the reaction path and to avoid the saddle point regions. Tunneling also dominates the low and room temperature reactions for excited vibrational states, but in these cases the results are not as sensitive to the nature of the tunneling path. Overbarrier mechanisms dominate for both thermal and excited-vibrational state reactions for T > 600 K. For the excited-state reaction (with initial vibrational quantum number n > 0) a transition state switch occurs for T > 1000 K for the O + HD(n = 1) → OD + H case and for T > 1500 K for the O + DH(n = 1) → OD + H reaction, and this may be a general phenomenon for excited-state reactions at higher temperature. In the present case the switch occurs from an early variational transition state where the vibrationally adiabatic approximation is expected to be valid to a tighter variational transition state where nonadiabatic effects are probably important and should be included.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号