首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   175篇
  免费   4篇
  国内免费   1篇
化学   138篇
晶体学   1篇
数学   7篇
物理学   34篇
  2021年   1篇
  2019年   1篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   8篇
  2012年   4篇
  2011年   7篇
  2010年   3篇
  2009年   3篇
  2008年   12篇
  2007年   14篇
  2006年   9篇
  2005年   16篇
  2004年   13篇
  2003年   7篇
  2002年   11篇
  2001年   10篇
  2000年   5篇
  1999年   2篇
  1997年   2篇
  1996年   4篇
  1995年   4篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   4篇
  1981年   3篇
  1980年   2篇
  1979年   3篇
  1977年   3篇
  1976年   3篇
  1974年   2篇
  1973年   1篇
  1970年   1篇
  1967年   1篇
排序方式: 共有180条查询结果,搜索用时 185 毫秒
1.
In both title structures, C40H32N4Si and C40H32N4Si·3C4H8O, the angles around the Si atom deviate significantly from the tetrahedral value [104.34 (7)–116.63 (7)° in the nonsolvate and 99.91 (15)–116.85 (15)° in the solvate]. The amino H atoms in the solvated structure are involved in hydrogen bonding with two of the tetrahydrofuran solvent molecules.  相似文献   
2.
The selenium(IV) diimide AdN=Se=NAd (Ad = 1-adamantyl) adopts a monomeric structure with a Z,E configuration in the solid state whereas the seleninylamine OSe(mu-NBut)2SeO crystallizes as the cis-dimer.  相似文献   
3.
Reaction of the secocubane [Sn3(mu2-NHtBu)2(mu2-NtBu)(mu3-NtBu)] (1) with dibutylmagnesium produces the heterobimetallic cubane [Sn3Mg(mu3-NtBu)4] (4) which forms the monochalcogenide complexes of general formula [ESn3Mg(mu3-NtBu)4] (5a, E = Se; 5b, E = Te) upon reaction with elemental chalcogens in THF. By contrast, the reaction of the anionic lithiated cubane [Sn3Li(mu3-NtBu)4]- with the appropriate quantity of selenium or tellurium leads to the sequential chalcogenation of each of the three Sn(II) centres. Pure samples of the mono- or dichalcogenides are, however, best obtained by stoichiometric redistribution reactions of [Sn3Li(mu3-NtBu)4]- and the trichalcogenides [E3Sn3Li(mu3-NtBu)4]- (E = Se, Te). These reactions are conveniently monitored by using 119Sn NMR spectroscopy. The anion [Sn3Li(mu3-NtBu)4]- also acts as an effective chalcogen-transfer reagent in reactions of selenium with the neutral cubane [{Snmu3-N(dipp)}4] (8) (dipp = 2,6-diisopropylphenyl) to give the dimer [(thf)Sn{mu-N(dipp)}2Sn(mu-Se)2Sn{mu-N(dipp)}2Sn(thf)] (9), a transformation that results in cleavage of the Sn4N4 cubane into four-membered Sn2N2 rings. The X-ray structures of 4, 5a, 5b, [Sn3Li(thf)(mu3-NtBu)4(mu3-Se)(mu2-Li)(thf)]2 (6a), [TeSn3Li(mu3-NtBu)4][Li(thf)4] (6b), [Te2Sn3Li(mu3-NtBu)4][Li([12]crown-4)2] (7b') and 9 are presented. The fluxional behaviour of cubic imidotin chalcogenides and the correlation between NMR coupling constants and tin-chalcogen bond lengths are also discussed.  相似文献   
4.
The redox chemistry of tellurium-chalcogenide systems is examined via reactions of tellurium(IV) tetrachloride with Li[(t)()BuN(E)P(mu-N(t)Bu)(2)P(E)N(H)(t)Bu] (3a, E = S; 3b, E = Se). Reaction of TeCl(4) with 2 equiv of 3a in THF generates the tellurium(IV) species TeCl(3)[HcddS(2)][H(2)cddS(2)] 4a [cddS(2) = (t)BuN(S)P(mu-N(t)Bu)(2)P(S)N(t)Bu] at short reaction times, while reduction to the tellurium(II) complex TeCl(2)[H(2)cddS(2)](2) 5a is observed at longer reaction times. The analogous reaction of TeCl(4) and 3b yields only the tellurium(II) complex TeCl(2)[H(2)cddSe(2)](2) 5b. The use of 4 equiv of 3a or 3b produces Te[HcddE(2)](2) (6a (E = S) or 6b (E = Se)). NMR and EPR studies of the 5:1 reaction of 3a and TeCl(4) in THF or C(6)D(6) indicate that the formation of the Te(II) complex 6a via decomposition of a Te(IV) precursor occurs via a radical process to generate H(2)cddS(2). Abstraction of hydrogen from THF solvent is proposed to account for the formation of 2a. These results are discussed in the context of known tellurium-sulfur and tellurium-nitrogen redox systems. The X-ray crystal structures of 4a.[C(7)H(8)](0.5), 5a, 5b, 6a.[C(6)H(14)](0.5), and 6b.[C(6)H(14)](0.5) have been determined. The cyclodiphosph(V)azane dichalcogenide ligand chelates the tellurium center in an E,N (E = S, Se) manner in 4a.[C(7)H(8)](0.5), 6a.[C(6)H(14)](0.5), and 6b.[C(6)H(14)](0.5) with long Te-N bond distances in each case. Further, a neutral H(2)cddS(2) ligand weakly coordinates the tellurium center in 4a small middle dot[C(7)H(8)](0.5) via a single chalcogen atom. A similar monodentate interaction of two neutral ligands with a TeCl(2) unit is observed in the case of 5a and 5b, giving a trans square planar arrangement at tellurium.  相似文献   
5.
The reaction of the chelating ligand tBuNTe(mu-NtBu)2TeNtBu (L) with LiI in THF yields [Li(THF)2L](mu 3-I)[LiI(L)] (3). This complex is also formed by the attempted oxidation of [Li2Te(NtBu)3]2 with I2. An X-ray analysis of 3 reveals that the tellurium diimide dimer acts as a chelating ligand toward (a) [Li(THF)2]+ cations and (b) a molecule of LiI. An extended structure is formed via weak Te...I interactions [3.8296(7)-3.9632(7) A] involving both mu 3-iodide counterions and the iodine atoms of the coordinated LiI molecules. Crystal data: 3, triclinic, space group P1, a = 10.1233(9) A, b = 15.7234(14) A, c = 18.8962(17) A, alpha = 86.1567(16) degrees, beta = 84.3266(16) degrees, gamma = 82.9461(16) degrees, V = 2965.8(5) A3, Z = 2. The oxidation by air of [Li2Te(NtBu)3]2 in toluene produces the radical (Li3[Te(NtBu)3]2), which exhibits an ESR spectrum consisting of a septet of decuplets (g = 2.00506, a(14N) = 5.26 G, a(7Li) = 0.69 G). The complexes [(THF)3Li3(mu 3-X)(Te(NtBu)3)] (4a, X = Cl; 4b, X = Br; 4c, X = I) are obtained from the reaction of [Li2Te(NtBu)3]2 with lithium halides in THF. The iodide complex, 4c, has a highly distorted, cubic structure comprised of the pyramidal [Te(NtBu)3]2- dianion which is linked through three [Li(THF)]+ cations to I- Crystal data: 4c, triclinic, space group P1, a = 12.611(8) A, b = 16.295(6) A, c = 10.180(3) A, alpha = 98.35(3) degrees, beta = 107.37(4) degrees, gamma = 108.26(4) degrees, V = 1829(2) A3, Z = 2.  相似文献   
6.
7.
The reaction of ((t)BuNH)(3)PNSiMe(3) (1) with 1 equiv of (n)BuLi results in the formation of Li[P(NH(t)Bu)(2)(N(t)Bu)(NSiMe(3))] (2); treatment of 2 with a second equivalent of (n)BuLi produces the dilithium salt Li(2)[P(NH(t)Bu)(N(t)Bu)(2)(NSiMe(3))] (3). Similarly, the reaction of 1 and (n)BuLi in a 1:3 stoichiometry produces the trilithiated species Li(3)[P(N(t)Bu)(3)(NSiMe(3))] (4). These three complexes represent imido analogues of dihydrogen phosphate [H(2)PO(4)](-), hydrogen phosphate [HPO(4)](2)(-), and orthophosphate [PO(4)](3)(-), respectively. Reaction of 4 with alkali metal alkoxides MOR (M = Li, R = SiMe(3); M = K, R = (t)Bu) generates the imido-alkoxy complexes [Li(3)[P(N(t)Bu)(3)(NSiMe(3))](MOR)(3)] (8, M = Li; 9, M = K). These compounds were characterized by multinuclear ((1)H, (7)Li, (13)C, and (31)P) NMR spectroscopy and, in the cases of 2, 8, and 9.3THF, by X-ray crystallography. In the solid state, 2 exists as a dimer with Li-N contacts serving to link the two Li[P(NH(t)Bu)(2)(N(t)Bu)(NSiMe(3))] units. The monomeric compounds 8 and 9.3THF consist of a rare M(3)O(3) ring coordinated to the (LiN)(3) unit of 4. The unexpected formation of the stable radical [(Me(3)SiN)P(mu(3)-N(t)Bu)(3)[mu(3)-Li(THF)](3)(O(t)Bu)] (10) is also reported. X-ray crystallography indicated that 10 has a distorted cubic structure consisting of the radical dianion [P(N(t)Bu)(3)(NSiMe(3))](.2)(-), two lithium cations, and a molecule of LiO(t)Bu in the solid state. In dilute THF solution, the cube is disrupted to give the radical monoanion [(Me(3)SiN)((t)BuN)P(mu-N(t)Bu)(2)Li(THF)(2)](.-), which was identified by EPR spectroscopy.  相似文献   
8.
The metathetical reactions between SnBr4 and Li2[E'C(PPh2E)2] in toluene produce the homoleptic tin(IV) complexes Sn[E′C(PPh2E)2]2 [E = E′ = S ( 1b ); E = S, E′ = Se ( 1c )], which were isolated as red crystals and structurally characterized by X‐ray crystallography. The metrical parameters of these octahedral complexes are compared with those of the all‐selenium analog Sn[E′C(PPh2E)2]2 (E = E′ = Se, 1a ), which was prepared previously by a different route.  相似文献   
9.
The B3N3 ring in the title compound, 1,3,5‐tri‐tert‐butyl‐2,4‐difluoro‐6‐phenyl­cyclo­triborazane, [PhF2B3N3tBu3] or C18H32B3F2N3, an asymmetrically substituted borazine, is distorted from planarity. The molecule resides on a twofold axis. The N atoms of the N—B(Ph)—N group lie on opposite sides of the least‐squares plane formed by the four remaining ring atoms, due to steric accommodation of the tert‐butyl groups, a conformation not previously observed for a borazine. The B—N bond lengths are in the range 1.4283 (14)–1.4493 (12) Å, due to the F substituents residing on two of the B atoms, which also produce a large deviation from 120° in one of the B—N—B angles [ca 113.6 (1)°]. The phenyl group is twisted with respect to the B3N3 ring, the interplanar angle being 62.87 (5)°.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号