首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   155篇
  免费   0篇
化学   139篇
晶体学   3篇
力学   3篇
物理学   10篇
  2019年   1篇
  2018年   1篇
  2016年   2篇
  2014年   1篇
  2013年   2篇
  2012年   4篇
  2011年   5篇
  2010年   11篇
  2009年   8篇
  2008年   8篇
  2007年   6篇
  2006年   7篇
  2005年   7篇
  2004年   6篇
  2003年   9篇
  2002年   11篇
  2001年   5篇
  2000年   7篇
  1999年   3篇
  1997年   2篇
  1996年   10篇
  1995年   5篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   9篇
  1989年   4篇
  1988年   5篇
  1987年   4篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1981年   1篇
  1973年   1篇
排序方式: 共有155条查询结果,搜索用时 218 毫秒
1.
We present two methods for the creation of two-particle entangled states of excitons in a coupled quantum dot system. The system contains two identical quantum dots that are coupled by an inter-dot hopping process. The manipulation of the system is succeeded by proper application of an external laser field.  相似文献   
2.
3.
4.
Two series of octahedral oxovanadium(IV) compounds, containing charged or neutral axial ligands, with the tetradentate amidate molecules Hcapca and H2capcah of the general formulae trans-[V(IV)OX(capca)]0/+ (where X = Cl- (1.CH2Cl2), SCN- (2), N3 (3), CH3COO- (4), PhCOO- (5), imidazole (6. CH3NO2), and eta-nBuNH2 (7)) and cis-[V(VI)OX(Hcapcah)]0/+ (where X = Cl- (8.0.5CH2Cl2), SCN (9), N3 (10.2CH3OH), and imidazole (11)), were synthesized and characterized by X-ray crystallography (1.CH3OH,8.CHCl3, 9.2CH3CN, 10.CH3CN and cis-[VO(imidazole)(Hcapcah)+) and continuous-wave electron paramagnetic resonance (cw EPR) spectroscopy. In addition to the synthesis, crystallographic and EPR studies, the optical, infrared and magnetic properties (room temperature) of these compounds are reported. Ab initio calculations were also carried out on compound 8 CHCl3 and revealed that this isomer is more stable than the trans isomer, in good agreement with the experimental data. The cw EPR studies of compounds 1-5, that is, the V(IV)O2+ species containing monoanionic axial ligands, revealed a novel phenomenon of the reduction of their A, components by about 10% relative to the N4 reference compounds ([V(IV)O-(imidazole)4]2+ and [V(IV)O(2,2-bipyridine)2]2+). In marked contrast, such a reduction is not observed in compounds 6. CH3NO2-11, which contain neutral axial ligands. Based on the spin-Hamiltonian formalism a theoretical explanation is put forward according to which the observed reduction of Az is due to a reduction of the electron - nuclear dipolar coupling (P). The present findings bear strong relevance to cw EPR studies of oxovanadium(IV) in vanadoproteins, V(IV)O2+-substituted proteins, and in V(IV)O2+ model compounds, since the hyperfine coupling constant, Az, has been extensively used as a benchmark for identification of equatorial-donor-atom sets in oxovanadium(IV) complexes.  相似文献   
5.
The preparations, X-ray structures, and detailed physical characterizations are presented for three new tetranuclear Fe(III)/RCO(2)(-)/phen complexes, where phen = 1,10-phenanthroline: [Fe(4)(OHO)(OH)(2)(O(2)CMe)(4)(phen)(4)](ClO(4))(3).4.4MeCN.H(2)O (1.4.4MeCN.H(2)O); [Fe(4)O(2)(O(2)CPh)(7)(phen)(2)](ClO(4)).2MeCN (2.2MeCN); [Fe(4)O(2)(O(2)CPh)(8)(phen)(2)].2H(2)O (3.2H(2)O). Complex 1.4.4MeCN.H(2)O crystallizes in space group P2(1)/n, with a = 18.162(9) A, b = 39.016(19) A, c = 13.054(7) A, beta = 104.29(2) degrees, Z = 4, and V = 8963.7 A(3). Complex 2.2MeCN crystallizes in space group P2(1)/n, with a = 18.532(2) A, b = 35.908(3) A, c = 11.591(1) A, beta = 96.42(1) degrees, Z = 4, and V = 7665(1) A(3). Complex 3.2H(2)O crystallizes in space group I2/a, with a = 18.79(1) A, b = 22.80(1) A, c = 20.74(1) A, beta = 113.21(2) degrees, Z = 4, and V = 8166(1) A(3). The cation of 1 contains the novel [Fe(4)(mu(4)-OHO)(mu-OH)(2)](7+) core. The core structure of 2 and 3 consists of a tetranuclear bis(mu(3)-O) cluster disposed in a "butterfly" arrangement. Magnetic susceptibility data were collected on 1-3 in the 2-300 K range. For the rectangular complex 1, fitting the data to the appropriate theoretical chi(M) vs T expression gave J(1) = -75.4 cm(-1), J(2) = -21.4 cm(-1), and g = 2.0(1), where J(1) and J(2) refer to the Fe(III)O(O(2)CMe)(2)Fe(III) and Fe(III)(OH)Fe(III) pairwise exchange interactions, respectively. The S = 0 ground state of 1 was confirmed by 2 K magnetization data. The data for 2 and 3 reveal a diamagnetic ground state with antiferromagnetic exchange interactions among the four high-spin Fe(III) ions. The exchange coupling constant J(bb) ("body-body" interaction) is indeterminate due to prevailing spin frustration, but the "wing-body" antiferromagnetic interaction (J(wb)) was evaluated to be -77.6 and -65.7 cm(-1) for 2 and 3, respectively, using the appropriate spin Hamiltonian approach. M?ssbauer spectra of 1-3 are consistent with high-spin Fe(III) ions. The data indicated asymmetry of the Fe(4) core of 1 at 80 K, which is not detected at room temperature due to thermal motion of the core. The spectra of 2 and 3 analyze as two quadrupole-split doublets which were assigned to the body and wing-tip pairs of metal ions. (1)H NMR spectra are reported for 1-3 with assignment of the main resonances.  相似文献   
6.
Vanadium interactions with low molecular mass binders in biological fluids entail the existence of vanadium species with variable chemical and biological properties. In the course of efforts to elucidate the chemistry related to such interactions, we have explored the oxidative chemistry of vanadium(III) with the physiologically relevant tricarboxylic citric acid. Aqueous reactions involving VCl(3) and anhydrous citric acid, at pH approximately 7, resulted in blue solutions. Investigation into the nature of the species arising in those solutions revealed, through UV/visible and EPR spectroscopies, oxidation of vanadium(III) to vanadium(IV). Further addition of H(2)O(2) resulted in the oxidation of vanadium(IV) to vanadium(V), and the isolation of a new vanadium(V)-citrate complex in the form of its potassium salt. Analogous reactions with K(4)[V(2)O(2)(C(6)H(4)O(7))(2)].6H(2)O and H(2)O(2) or V(2)O(5) and citrate at pH approximately 5.5 afforded the same material. Elemental analysis pointed to the molecular formulation K(4)[V(2)O(4)(C(6)H(5)O(7))(2)].5.6H(2)O (1). Complex 1 was further characterized by FT-IR and X-ray crystallography. 1 crystallizes in the triclinic space group P(-)1, with a = 11.093(4) A, b = 9.186(3) A, c = 15.503(5) A, alpha = 78.60(1) degrees, beta = 86.16(1) degrees, gamma = 69.87(1) degrees, V = 1454.0(8) A(3), and Z = 2. The X-ray structure of 1 reveals the presence of a dinuclear vanadium(V)-citrate complex containing a V(V)(2)O(2) core. The citrate ligands are triply deprotonated, and as such they bind to vanadium(V) ions, thus generating a distorted trigonal bipyramidal geometry. Binding occurs through the central alkoxide and carboxylate groups, with the remaining two terminal carboxylates being uncoordinated. One of those carboxylates is protonated and contributes to hydrogen bond formation with the deprotonated terminal carboxylate of an adjacent molecule. Therefore, an extended network of hydrogen-bonded V(V)(2)O(2)-core-containing dimers is created in the lattice of 1. pH-dependent transformations of 1 in aqueous media suggest its involvement in a web of vanadium(V)-citrate dinuclear species, consistent with past solution speciation studies investigating biologically relevant forms of vanadium.  相似文献   
7.
By the interaction of M(η5-C5H4R)2Cl2 (M = Zr, Hf; R = H, Me, SiMe3) and 8-hydroxyquinoline (oxH) or 5-chloro-8-hydroxyquinoline (ox′H) in dichloromethane solution at 20°C, the compounds M(η5-C5H4R)Clox2 and M(η5-C5H4R)Clox2′ were prepared respectively. A similar reaction of Ti(η5-C5H5)Cl3 with ox′H in acetonitrile solution gave Ti(η5-C5H5)Clox2′. All complexes were characterized by elemental microanalysis and by IR and 1H NMR spectroscopy. X-ray analysis of M(η5-C5H5R)Clox2′ (M = Ti, Hf) shows that these molecules may be described in terms of stereochemistry of eight-coordination approximating dodecahedral geometry more closely than octahedral geometry. With respect to octahedral coordination, the nitrogen atoms lie in a cis-configuration and the oxygen atoms in a trans-configuration. Dichloromethane molecules co-crystallize with the hafnium complex and occupy a position on the 2-fold axis. The structural results are compared with those in related compounds.  相似文献   
8.
Reaction of [V(IV)OCl(2)(THF)(2)] in aqueous solution with 2 equiv of AgBF(4) or AgSbF(6) and then with 2 equiv of 2,2'-bipyridine (bipy), 4,4'-di-tert-butyl-2,2'-bipyridine (4,4'-dtbipy), or 4,4'-di-methyl-2,2'-bipyridine (4,4'-dmbipy) affords compounds of the general formula cis-[V(IV)O(OH)(L(NN))(2)]Y [where L(NN) = bipy, Y = BF(4)(-) (1), L(NN) = 4,4'-dtbipy, Y = BF(4)(-) (2.1.2H(2)O), L(NN) = 4,4'-dmbipy, Y = BF(4)(-) (3.2H(2)O), and L(NN) = 4,4'-dtbipy, Y = SbF(6)(-) (4)]. Sequential addition of 1 equiv of Ba(ClO(4))(2) and then of 2 equiv of bipy to an aqueous solution containing 1 equiv of V(IV)OSO(4).5H(2)O yields cis-[V(IV)O(OH)(bipy)(2)]ClO(4) (5). The monomeric compounds 1-5 contain the cis-[V(IV)O(OH)](+) structural unit. Reaction of 1 equiv of V(IV)OSO(4).5H(2)O in water and of 1 equiv of [V(IV)OCl(2)(THF)(2)] in ethanol with 2 equiv of bipy gives the compounds cis-[V(IV)O(OSO(3))(bipy)(2)].CH(3)OH.1.5H(2)O (6.CH(3)OH.1.5H(2)O) and cis-[V(IV)OCl(bipy)(2)]Cl (7), respectively, while reaction of 1 equiv of [V(IV)OCl(2)(THF)(2)] in CH(2)Cl(2) with 2 equiv of 4,4'-dtbipy gives the compound cis-[V(IV)OCl(4,4'-dtbipy)(2)]Cl.0.5CH(2)Cl(2) (8.0.5CH(2)Cl(2)). Compounds cis-[V(IV)O(BF(4))(4,4'-dtbipy)(2)]BF(4) (9), cis-[V(IV)O(BF(4))(4,4'-dmbipy)(2)]BF(4) (10), and cis-[V(IV)O(SbF(6))(4,4'-dtbipy)(2)]SbF(6) (11) were synthesized by sequential addition of 2 equiv of 4,4'-dtbipy or 4,4'-dmbipy and 2 equiv of AgBF(4) or AgSbF(6) to a dichloromethane solution containing 1 equiv of [V(IV)OCl(2)(THF)(2)]. The crystal structures of 2.1.2H(2)O, 6.CH(3)OH.1.5H(2)O, and 8.0.5CH(2)Cl(2) were demonstrated by X-ray diffraction analysis. Crystal data are as follows: Compound 2.1.2H(2)O crystallizes in the orthorhombic space group Pbca with (at 298 K) a = 21.62(1) A, b = 13.33(1) A, c = 27.25(2) A, V = 7851(2) A(3), Z = 8. Compound 6.CH(3)OH.1.5H(2)O crystallizes in the monoclinic space group P2(1)/a with (at 298 K) a = 12.581(4) A, b = 14.204(5) A, c = 14.613(6) A, beta = 114.88(1) degrees, V = 2369(1), Z = 4. Compound 8.0.5CH(2)Cl(2) crystallizes in the orthorhombic space group Pca2(1) with (at 298 K) a = 23.072(2) A, b = 24.176(2) A, c = 13.676(1) A, V = 7628(2) A(3), Z = 8 with two crystallographically independent molecules per asymmetric unit. In addition to the synthesis and crystallographic studies, we report the optical, infrared, magnetic, conductivity, and CW EPR properties of these oxovanadium(IV) compounds as well as theoretical studies on [V(IV)O(bipy)(2)](2+) and [V(IV)OX(bipy)(2)](+/0) species (X = OH(-), SO(4)(2)(-), Cl(-)).  相似文献   
9.
A mixed-valence Mn(III)-Mn(II)-Mn(III) trinuclear complex of stoichiometry MnIIIMnIIMnIII(Hsaladhp)2(Sal)4.2CH3CN (1), where H3saladhp is a tridentate Schiff-base ligand, has been structurally characterized with X-ray crystallography. The Mn(III)Mn(II)Mn(III) angles are strictly 180 degrees as required by crystallographic inversion symmetry. The complex is valence-trapped with two terminal Mn(III) ions in a distorted square pyramidal geometry. The Mn(III)...Mn(II) separation is 3.495 A. The trinuclear complex shows small antiferromagnetic exchange J coupling. The magnetic parameters obtained from the fitting procedure in the temperature range 10-300 K are J1 = -5.7 cm-1, g = 2.02, zJ = -0.19 cm-1, and R = 0.004. The EPR spectrum was obtained at 4 K in CHCl3 and in tetrahydrofuran glasses. The low-field EPR signal is a superposition of two signals, one centered around g = 3.6 and the other, for which hyperfine structure is observed, centered around g = 4.1 indicating an S = 3/2 state. In addition, there is a 19-line signal at g = 2.0. The multiline signal compares well with that observed for the S2 or S0* states of the oxygen-evolving complex. 1H NMR data reveal that the trinuclear compound keeps its integrity into the CHCl3 solution. Crystal data for complex 1: [C54H52N4O18Mn3], M = 1209.82, triclinic, space group P1, a = 10.367(6) A, b = 11.369(6) A, c = 13.967(8) A; alpha = 112.56(1) degree, beta = 93.42(2) degrees, gamma = 115.43(1) degree, Z = 1.  相似文献   
10.
Summary The complexes K[Pt(l-aze)Cl2, [Pt(l-aze)2] and [Pd(l-aze)2] (l-aze = l-azetidine-2-carboxylate) were prepared. X-ray structures show that [Pt(l-aze)2] and [Pd(l-aze)2] are isomorphous, having a planar tetragonal geometry with a trans configuration around the Pt and Pd atoms. Slight puckerings of the MN(1)N(11)O(11) chelate ring (M = Pt or Pd) and the azetidine ring were observed. The circular dichroism (c.d.) spectra of the complexes in aqueous solution agree with the structures found in the solid state as far as the hexadecant rule is concerned, giving, for the trans configuration of [M(l-ia)2] (where ia = imino acid), the profile of the c.d. signs for the three predominant d-d transitions as: +,-,-. I.r., conductivity and n.m.r. measurements are also reported and are in accord with the proposed structures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号