首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   1篇
化学   7篇
力学   2篇
数学   1篇
  2020年   1篇
  2019年   3篇
  2016年   2篇
  2013年   1篇
  2012年   1篇
  2009年   2篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
New aromatic (co)polyesters containing pendant propargyloxy groups were synthesized by phase transfer‐catalyzed interfacial polycondensation of 5‐(propargyloxy)isophthaloyl chloride (P‐IPC) and various compositions of P‐IPC and isophthaloyl chloride with bisphenol A. FTIR and NMR spectroscopic data, respectively, revealed successful incorporation of pendant propargyloxy groups into (co)polyesters and formation of (co)polyesters with desired compositions. (Co)polyesters exhibited good solubility in common organic solvents such as chloroform, dichloromethane, and tetrahydrofuran and could be cast into transparent, flexible, and tough films from chloroform solution. Inherent viscosities and number average molecular weights of (co)polyesters were in the range 0.77–1.33 dL/g and 43,600–118,000 g/mol, respectively, indicating the achievement of reasonably high‐molecular weights. The 10% weight loss temperatures of (co)polyesters were in the range 390–420 °C, demonstrating their good thermal stability. (Co)polyesters exhibited Tg in the range 146–170 °C and Tg values decreased with increase in mol % incorporation of P‐IPC. The study of non‐isothermal curing by DSC indicated thermal crosslinking of (co)polyesters via propargyloxy groups. The utility of pendant propargyloxy group was demonstrated by post‐modification of the selected copolyester with 1‐(4‐azidobutyl)pyrene, 9‐(azidomethyl)anthracene, and azido‐terminated poly(ethyleneglycol) monomethyl ether via copper(I)‐catalyzed Huisgen 1,3‐dipolar cycloaddition reaction. FTIR and 1H NMR spectra confirmed that click reaction was quantitative. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 588–597  相似文献   
2.
Three bisphenols containing cardo perhydrocumyl cyclohexylidene group, namely; 1,1-bis(4-hydroxyphenyl)-4-perhydrocumylcyclohexane, 1,1-bis(4-hydroxy-3-methylphenyl)-4-perhydrocumylcyclohexane and 1,1-bis(4-hydroxy-3,5-dimethylphenyl)-4-perhydrocumylcyclohexane were synthesized starting from p-cumyl phenol. Each of these bisphenols was polycondensed with both terephthaloyl chloride and isophthaloyl chloride by phase transfer-catalyzed interfacial polymerization to obtain a series of new aromatic polyesters. Inherent viscosities and number average molecular weights of polyesters were in the range 0.51-0.64 dL/g and 17390-41430?g/mol, respectively which indicated the formation of reasonably high molecular weight polymers. The detailed NMR studies revealed that axial and equatorial identity of the phenyl rings of bisphenols was retained in polyesters resulting in constitutional isomerism. Polyesters containing perhydrocumyl cyclohexylidene groups showed excellent solubility in organic solvents viz, chloroform, dichloromethane, 1,1,2,2-tetrachloroethane and tetrahydrofuran. The self-standing films of polyesters could be cast from their chloroform solution. The 10% weight loss temperatures and glass transition temperatures of polyesters were in the range 453–485?°C and 201–267?°C, respectively demonstrating their excellent thermal characteristics. The gas permeability study of polyesters was carried out for He, H2 and N2 by variable-volume method. An improvement in permeability and decrease in selectivity was observed due to symmetric methyl substituents while reverse trend was observed in case of polyesters with asymmetric methyl substituents.  相似文献   
3.
Russian Journal of Electrochemistry - A micro-bricks shaped tungsten oxide (WO3) was prepared by hydrothermal method. The prepared material was characterized by field emission scanning electron...  相似文献   
4.
Two new ring opening polymerization (ROP) initiators, namely, (3‐allyl‐2‐(allyloxy)phenyl)methanol and (3‐allyl‐2‐(prop‐2‐yn‐1‐yloxy)phenyl)methanol each containing two reactive functionalities viz. allyl, allyloxy and allyl, propargyloxy, respectively, were synthesized from 3‐allylsalicyaldehyde as a starting material. Well defined α‐allyl, α′‐allyloxy and α‐allyl, α′‐propargyloxy bifunctionalized poly(ε‐caprolactone)s with molecular weights in the range 4200–9500 and 3600–10,900 g/mol and molecular weight distributions in the range 1.16–1.18 and 1.15–1.16, respectively, were synthesized by ROP of ε‐caprolactone employing these initiators. The presence of α‐allyl, α′‐allyloxy and α‐allyl, α′‐propargyloxy functionalities on poly(ε‐caprolactone)s was confirmed by FT‐IR, 1H, 13C NMR spectroscopy, and MALDI‐TOF analysis. The kinetic study of ROP of ε‐caprolactone with both the initiators revealed the pseudo first order kinetics with respect to ε‐caprolactone consumption and controlled behavior of polymerization reactions. The usefulness of α‐allyl, α′‐allyloxy functionalities on poly(ε‐caprolactone) was demonstrated by performing the thiol‐ene reaction with poly(ethylene glycol) thiol to obtain (mPEG)2‐PCL miktoarm star copolymer. α‐Allyl, α′‐propargyloxy functionalities on poly(ε‐caprolactone) were utilized in orthogonal reactions i.e copper catalyzed alkyne‐azide click (CuAAC) with azido functionalized poly(N‐isopropylacrylamide) followed by thiol‐ene reaction with poly(ethylene glycol) thiol to synthesize PCL‐PNIPAAm‐mPEG miktoarm star terpolymer. The preliminary characterization of A2B and ABC miktoarm star copolymers was carried out by 1H NMR spectroscopy and gel permeation chromatography (GPC). © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 844–860  相似文献   
5.
Expanding on our strategy to synthesize aromatic step‐growth polymers containing pendant clickable azido groups via functional monomer approach, we have now designed and synthesized a new cardo bisphenol, viz., 2‐(2‐azidoethyl)‐3, 3‐bis(4‐hydroxyphenyl) isoindolin‐1‐one (PPH‐N3). PPH‐N3 was conveniently synthesized starting from commercially available phenolphthalein by a three‐step route in an overall yield of 65% using simple organic transformations. Aromatic (co)polyesters bearing pendant azido groups were synthesized by low‐temperature solution polycondensation of PPH‐N3 or different molar ratios of PPH‐N3 and bisphenol‐A (BPA) with aromatic diacid chlorides in dry dichloromethane in the presence of triethylamine (TEA) as a base. The formation of medium to reasonably high‐molecular‐weight (co)polyesters was evidenced from intrinsic viscosity and number‐average molecular‐weight measurements that were in the range 0.52–0.85 dL/g and 16,700–28,200, respectively. Tough, transparent, and flexible films could be cast from chloroform solutions of these (co)polyesters. (Co)polyesters were characterized using FTIR, 1H NMR, 13C NMR spectroscopy, XRD, and TGA. The thermal curing reaction of (co)polyesters involving decomposition of azido groups was studied by DSC analysis. The chemical modification of a representative copolyester containing pendant azido groups was carried out quantitatively using catalyst‐free azide‐maleimide cycloaddition reaction with two maleimides, namely, N‐methylmaleimide and N‐hexylmaleimide. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1516–1526  相似文献   
6.
In the present work, the effect of MHD flow and heat transfer within a boundary layer flow on an upper-convected Maxwell (UCM) fluid over a stretching sheet is examined. The governing boundary layer equations of motion and heat transfer are non-dimensionalized using suitable similarity variables and the resulting transformed, ordinary differential equations are then solved numerically by shooting technique with fourth order Runge–Kutta method. For a UCM fluid, a thinning of the boundary layer and a drop in wall skin friction coefficient is predicted to occur for higher the elastic number. The objective of the present work is to investigate the effect of Maxwell parameter β, magnetic parameter Mn and Prandtl number Pr on the temperature field above the sheet.  相似文献   
7.
An analysis has been carried out to study the magnetohydrodynamic boundary layer flow and heat transfer characteristics of a laminar liquid film over a flat impermeable stretching sheet in the presence of a non-uniform heat source/sink. The basic unsteady boundary layer equations governing the flow and heat transfer are in the form of partial differential equations. These equations are converted to non-linear ordinary differential equations using similarity transformation. Numerical solutions of the resulting boundary value problem are obtained by the efficient shooting technique. The effects of magnetic and the non-uniform heat source/sink parameters on the dynamics are discussed. Findings of the paper reveal that non-uniform heat sinks are better suited for effective cooling of the stretching sheet. Skin friction coefficient and the local Nusselt number are also explored for typical values of magnetic and non-uniform heat source/sink parameters. The results are in excellent agreement with the earlier published works, under some limiting cases.  相似文献   
8.
Two new initiators, namely, 4‐(4‐(2‐(4‐(allyloxy) phenyl)‐5‐hydroxypentane 2‐yl) phenoxy)benzaldehyde and 4‐(4‐(allyloxy) phenyl)‐4‐(4‐(4‐formylphenoxy) phenyl) pentyl 2‐bromo‐2‐methyl propanoate containing “clickable” hetero‐functionalities namely aldehyde and allyloxy were synthesized starting from commercially available 4,4′‐bis(4‐hydroxyphenyl) pentanoic acid. These initiators were utilized, respectively, for ring opening polymerization of ε‐caprolactone and atom transfer radical polymerization of methyl methacrylate. Well‐defined α‐aldehyde, α′‐allyloxy heterobifunctionalized poly(ε‐caprolactones) (Mn,GPC: 5900–29,000, PDI: 1.26–1.43) and poly(methyl methacrylate)s (Mn,GPC: 5300–28800, PDI: 1.19–1.25) were synthesized. The kinetic study of methyl methacrylate polymerization demonstrated controlled polymerization behavior. The presence of aldehyde and allyloxy functionality on polymers was confirmed by 1H NMR spectroscopy. Aldehyde‐aminooxy and thiol‐ene metal‐free double click strategy was used to demonstrate reactivity of functional groups on polymers. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   
9.
This paper presents a mathematical analysis of MHD flow and heat transfer to a laminar liquid film from a horizontal stretching surface. The flow of a thin fluid film and subsequent heat transfer from the stretching surface is investigated with the aid of similarity transformation. The transformation enables to reduce the unsteady boundary layer equations to a system of non-linear ordinary differential equations. Numerical solution of resulting non-linear differential equations is found by using efficient shooting technique. Boundary layer thickness is explored numerically for some typical values of the unsteadiness parameter S and Prandtl number Pr, Eckert number Ec and Magnetic parameter Mn. Present analysis shows that the combined effect of magnetic field and viscous dissipation is to enhance the thermal boundary layer thickness.  相似文献   
10.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号