首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   0篇
化学   31篇
晶体学   11篇
物理学   8篇
  2013年   5篇
  2012年   1篇
  2011年   6篇
  2010年   2篇
  2009年   3篇
  2008年   5篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1997年   2篇
  1996年   1篇
  1992年   4篇
  1990年   1篇
  1981年   1篇
排序方式: 共有50条查询结果,搜索用时 171 毫秒
1.
Monodispersed silica particles up to ca. 1.2 μm in diameter were prepared by hydrolysis of tetraethoxysilane in the presence of sodium dodecyl sulfate (SDS). The particle size was increased with an increase of SDS added. The geometrical standard deviation of the particles was decreased with an increase of SDS. In the earlier reaction stage, double spherical particles by the coalescence of the particles were frequently observed when large amounts of SDS were added. Particle size was gradually increased after the coalescence occurred and spherical particles were finally obtained. The results of Nielsen’s chronomal analysis suggest that the polynuclear layer growth took place after the coalescence of the particles in the presence of larger amount of SDS.  相似文献   
2.
Anatase nanocrystals were precipitated mainly at the surface of the silica-titania gel films with hot water treatment, whereas the addition of poly(ethylene glycol) (PEG) in the films led to the dispersion of anatase nanocrystals in the whole of the films after the treatment. Both films with and without PEG showed high photocatalytic activities for acetaldehyde, NO x and stearic acid in the gas-solid system, and for methylene blue and potassium iodide in the liquid-solid system. The addition of PEG improved the photocatalytic activities of the resultant films due to the smaller anatase crystallites and the porous film structure. The residual silica under-layer of the superficially anatase-precipitated films is expected to act as a protective one for an organic polymer substrate against the photocatalytic degradation.  相似文献   
3.
Titania nanosheet-precipitated coatings have been prepared by treating SiO2-TiO2 gel films on glass substrates with hot water at 90°C under vibration. Longitudinal vibrations at about 6 Hz during the treatment enhanced the formation of titania nanosheet. The titania nanosheet consisted of several layers with a spacing of about 0.6 nm and was identified as hydrated titania with a lepidocrocite-type structure. The morphology of the titania nanosheet-precipitated coatings is probably achieved by lowering of the concentration of hydrolyzed titania species at the surface due to rapid water flow driven by the vibrations. The coatings were transparent in the visible range and showed high photocatalytic activity and antifogging property.  相似文献   
4.
Silica nanoparticles with high concentration were prepared by the sol–gel process based on the Stöber method using tetraethoxysilane as a starting material. It was found that silica sol with about 4 wt% in concentration and with a diameter of about 10 nm was obtained by controlling the reaction conditions in the Stöber process. By removing the solvent under a reduced pressure, the particle concentration was increased up to 15 wt% without aggregation.  相似文献   
5.
Development of Li2S–P2S5-based glass-ceramic electrolytes is reviewed. Superionic crystals of Li7P3S11 and Li3.25P0.95S4 were precipitated from the Li2S–P2S5 glasses at the selected compositions. These high temperature or metastable phases enhanced conductivity of glass ceramics up to over 10−3 S cm−1 at room temperature. The original (or mother) glass electrolytes itself showed somewhat lower conductivity of 10−4 S cm−1 and have important role as a precursor for obtaining the superionic crystals, which were not synthesized by a conventional solid-state reaction. The substitution of P2O5 for P2S5 at the composition 70Li2S·30P2S5 (mol%) improved both conductivity and electrochemical stability of glass-ceramic electrolytes. The all-solid-state In/LiCoO2 cell using the 70Li2S·27P2S5·3P2O5 (mol%) glass-ceramic electrolyte showed initial capacity of 105 mAh g−1 (gram of LiCoO2) at the current density of 0.13 mA cm−2 and exhibited higher electrochemical performance than that using the 70Li2S·30P2S5 glass-ceramic electrolyte.  相似文献   
6.
To improve the electrochemical performance of an all-solid-state In/80Li2S⋅20P2S5 (electrolyte)/LiMn2O4 cell, a lithium-titanate thin film was used to coat LiMn2O4. The interfacial resistance between LiMn2O4 and the electrolyte (measured after initial charging) decreased when the LiMn2O4 particles were coated with lithium-titanate. A cell with lithium-titanate-coated LiMn2O4 had a higher capacity than a cell with noncoated LiMn2O4 for current densities in the range 0.064 to 2.6 mA cm− 2. Additionally, a cell with coated LiMn2O4 retained 96% of the 10th-cycle reversible capacity at a current density of 0.064 mA cm− 2 after 50 cycles.  相似文献   
7.
8.
Using hot water treatment of sol–gel derived precursor gel films, Co–Al and Ni–Al layered double hydroxide (LDH) thin films were prepared. The precursor gel films of Al2O3–CoO or Al2O3–NiO were prepared from cobalt or nickel nitrates and aluminum tri-sec-butoxide using the sol–gel method. Then, the precursor gel films were immersed in a NaOH aqueous solution of 100 °C. Nanocrystallites of Co–Al and Ni–Al LDH were precipitated with the hot water treatment with NaOH solution. The largest amounts of nanocrystals were obtained with a solution of pH = 10 for Co–Al LDH, and with that of pH = 9 for Ni–Al LDH. X-ray diffraction measurements confirmed that this process formed CO3 2− intercalated LDHs. Both Co–Al and Ni–Al LDH thin films were confirmed to work as electrodes for electrochemical devices by cyclic voltammogram measurements.  相似文献   
9.
Highly proton-conductive elastic composites have been successfully prepared from H3PO4-doped silica gel and a styrene-ethylene-butylene-styrene (SEBS) block elastic copolymer. Ionic conductivities of the composites depended on the concentration of H3PO4 and the heat treatment temperature of the H3PO4-doped silica gel. It was found that H3PO4 added is present mainly as free orthophosphoric acid in the silica gel. The composite composed of H3PO4-doped silica gel with a molar ratio of H3PO4/SiO2 = 0.5 heat-treated at temperatures below 200°C and SEBS elastomer in 5 mass% showed a high conductivity of 10–5 S cm–1 at 25°C in an dry N2 atmosphere. The water adsorption during a storage in 25% relative humidity at room temperature for 1 day enhanced the ionic conductivities of composites by about one order of magnitude. Lower conductivities obtained in the composite with the H3PO4-doped silica gel heat-treated at 250°C for 1 h were due to the formation of crystalline Si3(PO4)4. The temperature dependence of conductivity of the composites was the Vogel-Tamman-Fulcher type, indicating that proton was transferred through a liquidlike phase formed in micropores of the H3PO4-doped silica gels. The temperature dependence of the modulus of the composite was similar to that of the SEBS elastomer. The thermoplastically deforming temperature of the composite was around 100°C, which was higher by 30°C than that of the SEBS elastomer.  相似文献   
10.
Silica gels doped with several protonic acids such as HClO4, H2SO4 and H3PO4 have been prepared by the sol-gel method and totally solid electric double-layer capacitors have been successfully fabricated using the highly proton-conductive silica gels as an electrolyte and activated carbon powder (ACP) hybridized with the silica gels as a polarizable electrode. It was found that the addition of HClO4, which had the highest value of acid dissociation constant among these three acids, most effectively increased the proton conductivity of the resultant acid-doped silica gels. Tablets of the HClO4-doped silica gels exhibited conductivities as high as 10–5–10–2 S cm–1 at room temperature in dry N2 atmosphere. One of the capacitors fabricated using the protonic acid-doped silica gels had a capacitance of 44 F/(gram of total ACP in the capacitor), which was comparable to those of conventional capacitors using liquid electrolytes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号