首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
化学   10篇
物理学   2篇
  2014年   2篇
  2012年   1篇
  2011年   2篇
  2010年   4篇
  2006年   1篇
  2004年   1篇
  1997年   1篇
排序方式: 共有12条查询结果,搜索用时 171 毫秒
1.
The crystallization of copper sulfide in aqueous supersaturated solutions in the presence of the polymer poly(ethylene oxide), PEO, and the surfactant sodium dodecyl sulfate, SDS, was investigated. In these systems, copper sulfide precipitation competes with the reaction between copper cations and dodecyl sulfate anions. The competition of the two reactions may affect the reaction products significantly; therefore it is important to study the properties of the surfactant salt, copper dodecyl sulfate (Cu(DS)2), in detail. The thermodynamic solubility constant of Cu(DS)2 was measured at 8 degrees C and was equal to (2.4 +/- 0.4) x 10(-10) M3. The Krafft point of Cu(DS)2 and its solubility curve (precipitation temperature for a range of concentrations) were also measured. The latter was found to be very close to room temperature. Temperature is thus a very significant parameter in these systems and must be carefully controlled in all experiments. The crystallization of copper sulfide in PEO-SDS solutions was investigated in solutions with compositions above and below the solubility curve. Copper sulfide nanoparticles predominate and are stabilized at temperatures above the solubility curve. Surprisingly, at temperatures below the solubility curve CuxS coexists with Cu(DS)2, which appears in the form of lamellar crystals. The system is further complicated by the presence of at least two different types of copper sulfides corresponding to different oxidation states of copper. Our results suggest that the predominance of Cu(DS)2 at lower temperatures is due to its limited solubility and is modified by the CuI/CuII redox equilibrium in combination with the solution pH.  相似文献   
2.
The concentration of trivalent americium and samarium in aqueous samples has been determined by means of alpha-radiometry and UV–Vis photometry, respectively, after chemical separation and pre-concentration of the elements by cation-exchange using Chelex-100 resin. Method calibration was performed using americium (241Am) and samarium standard solutions and resulted in a high chemical recovery for cation-exchange. Regarding, the effect of physicochemical parameters (e.g. pH, salinity, competitive cations and colloidal species) on the separation recovery of the trivalent elements from aqueous solutions by cation-exchange has also been investigated. The investigation was performed to evaluate the applicability of cation-exchange as separation and pre-concentration method prior to the quantitative analysis of trivalent f-elements in water samples, and has shown that the method could be successfully applied to waters with relatively low dissolved solid content.  相似文献   
3.
The seasonal changes in the concentration of uranium in an unconfined groundwater system in Cyprus have been investigated and compared to corresponding changes of boron and salinity, to better understand the chemical behavior of uranium in the respective system. Uranium concentration measurements were performed by alpha spectroscopy after selective pre-concentration, whereas boron concentration analysis and electrical conductivity measurements were carried out by photometry using azomethine-H and an electrical conductivity electrode, respectively. The experimental data show that seasonal variations are mainly related to rainwater infiltration and the specific chemical behavior of a species. Increased levels of uranium and boron in natural water systems are attributed to the increased stability of the uranium(VI)-carbonato complexes and the boric acid, which are in natural waters the predominant chemical species for uranium and boron, respectively. Dilution/dissolution processes govern the seasonal concentration changes of uranium and boron in a groundwater system, however redox-reactions resulting in the reduction of U(VI) to U(IV) affect significantly the concentration of uranium in the respective system, particularly under suboxic conditions.  相似文献   
4.
The affinity of Chelex-100 for radium has been investigated as a function of pH and salinity compared to the Chelex-100 affinity for uranium to assess possible application of the resin for the selective separation of the two naturally occurring radionuclides from aqueous solutions. According to the experimental data the maximum chemical recovery of Chelex-100 is observed for uranium at pH 5 and for radium at pH 3 indicating a pH controlled selectivity of the resin for the two radionuclides. Moreover, the effect of salinity on the chemical recovery of radium is significant, resulting in a dramatic decrease of the former with increasing salinity. On the other hand, there is almost no effect of the salinity on the chemical recovery of uranium, indicating the higher affinity of Chelex-100 for uranium, which could be attributed to the formation of inner-sphere complexes of U(VI) with the iminoacetic moieties of the resin. The method has been successfully applied for the uranium separation from a radionuclide mixture.  相似文献   
5.
A relatively rapid, economic and robust procedure is described for the alpha-radiometric analysis of natural waters. The analysis is performed by alpha-spectroscopy after pre-concentration and separation of uranium by cation-exchange (Chelex-100) and finally its electrodeposition on stainless steel discs. The method has been successfully applied to 100 ml samples of natural waters (e.g. ground- and seawaters) resulting in high-quality spectra for measurement times less than 34 h. In addition, a main advantage of the procedure (particularly for routine measurements) is that there is no consumption of organic solvents and multiple recycling/reuse of the resin is possible.  相似文献   
6.
The radioactivity concentration of 236Pu, 232U and 228Th in aqueous samples has been determined by means of alpha spectroscopy after chemical separation and pre-concentration of the radionuclides by cation exchange and liquid–liquid extraction using the Chelex-100 resin and 30% TBP/dodecan, respectively. Method calibration using a 236Pu standard solution containing the daughter radionuclides results in a detector efficiency of 18% and in a chemical recovery for cation-exchange which is (30 ± 7)%, (90 ± 5)% and (20 ± 5)% for plutonium, uranium and thorium, respectively. The chemical recovery for liquid–liquid extraction is found to be (60 ± 7)%, (50 ± 5)% and (70 ± 5)%, for plutonium, uranium and thorium, respectively. The differences in the efficiencies can be ascribed to the oxidation states, the different actinides present in solution. Taking into account that the electrodeposition of the radionuclides under study is quantitative, the total method efficiency is calculated to be (18 ± 15)%, (46 ± 7)% and (15 ± 5)%, for plutonium, uranium and thorium, respectively, at the mBq concentration range. The detection limit of the alpha spectrometric system has been found to be 0.2 mBq/L, suggesting that the method could be successfully applied for the radiometric analysis of the studied radionuclides and particularly uranium in aqueous samples.  相似文献   
7.
The crystallization of PbS in aqueous solutions containing the surfactant sodium dodecyl sulfate (SDS) and hydrophilic polymers resulted in a novel type of metastable nanotubes, the walls of which consist of layers of ordered PbS nanoparticles, apparently separated by layers of surfactant molecules. Information on the mechanism of formation of these structures was obtained by focusing on the roles of the polymer, and of the insoluble lead dodecyl sulfate (Pb(DS)2) present in the system. TEM investigations of the early stages of crystallization revealed the coexistence of PbS and Pb(DS)2 precipitates, the latter being surprisingly important for nanotube formation, and allowed to follow the evolution of layered structures from combination of the two types of crystals. Six different hydrophilic polymers have been used, which interact with SDS with varying strengths. Surprisingly, and in contrast to previous hypotheses, layered nanostructures were observed in all polymer solutions, regardless of the strength of polymer-surfactant interactions. This indicates that, although the presence of a polymer is necessary, polymer-SDS interactions are not a driving force for the formation of the layered structures and nanotubes. On the contrary, the interactions between the polymer chains and the growing particles appear to be of the utmost importance. Results presented here can be interpreted in terms of two alternative mechanisms for layered nanostructure and nanotube formation.  相似文献   
8.
Two different alpha-radiometric methods (e.g. alpha-spectroscopy and alpha-particle counting) have been applied to the determination of uranium in Cypriot groundwater samples after separation of the radionuclides by cation exchange using Chelex-100 and its electrodeposition on stainless steel planchettes. The data obtained were compared to show the advantages and disadvantages of the two radiometric methods, determine the alpha-radioactivity concentration and the radiation dose associated with the use of the studied groundwaters. Calibration of the methods was performed by means of uranium standard solutions and the corresponding data were used to evaluate linear range, detector efficiency, detection limits, value of the information obtained, and time of analysis of the methods. Comparison of the data obtained from calibration and natural sample measurements has shown that alpha-particle counting with a simple alpha-radiometer (equipped with a semiconductor detector) may offer only an activity value and not detailed information about the isotopic composition but it is the fastest method and the method of choice if only a screening method for the alpha-radioactivity measurement is required. Based on the alpha-radioactivity data, the corresponding radiation dose was estimated for situations where the groundwaters are used for drinking water purposes.  相似文献   
9.
A surface layer (thickness 1–10 μm) containing colloidal TiO2 or ZnO particles was prepared in EVA (a copolymer of ethylene and vinyl acetate). The inorganic particles were formed in situ by hydrolysis of incorporated titanium tetrachloride or diethyl zinc. The resulting materials were analyzed with UV spectroscopy, electron microscopy, X-ray diffraction, thermogravimetric analysis and atomic emission spectroscopy. The average diameter of the embedded TiO2 particles was 70 nm; these particles absorb UV radiation but also induce opacity in the polymer sheets in the visible wavelengths range. The ZnO particles were smaller (average diameter 15 nm); with a surface layer of embedded ZnO, transparent polymer sheets can be obtained that absorb UV radiation. © 1997 John Wiley & Sons, Ltd.  相似文献   
10.
The concentration of thorium in aqueous samples has been determined by means of alpha-spectroscopy and UV?CVis photometry after chemical separation and pre-concentration of the actinide by cation exchange and liquid-liquid extraction using Chelex-100 resin and 30%TBP in dodecan, respectively. Method calibration was performed using thorium standard solutions and resulted in a high chemical recovery for cation exchange and liquid extraction. Regarding, the effect of physicochemical parameters (e.g., pH, salinity, competitive cations, and colloidal species) on the separation recovery of thorium from aqueous solutions by cation exchange has also been investigated. The investigation was performed to evaluate the applicability of cation exchange and liquid extraction as separation and pre-concentration methods prior to the quantitative analysis of thorium in water samples, and has shown that the method could be successfully applied to waters with relatively low-salinity and metal ion contamination.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号