首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学   2篇
数学   1篇
  2008年   1篇
  2006年   1篇
  1998年   1篇
排序方式: 共有3条查询结果,搜索用时 31 毫秒
1
1.
We present quantitative modeling software for simulating multiple forces acting on a single particle in a microsystem. In this paper, we focus on dielectrophoretic (DEP) trapping of single cells against fluid flow. The software effectively models the trapping behavior for a range of particles including beads, mammalian cells, viruses, and bacteria. In addition, the software can be used to reveal useful information about the DEP traps - such as multipolar DEP force effects, trap size-selectivity, and effects from varying the flow chamber height. Our modeling software thus serves as a predictive tool, enabling the design of novel DEP traps with superior performance over existing trap geometries. In addition, the software can evaluate a range of trap dimensions to determine the effects on trapping behavior, thus optimizing the trap geometry before it is even fabricated. The software is freely available to the scientific community at: .  相似文献   
2.
It is well known that, for stepsize sufficiently small, compactattractors of ordinary differential equations persist underdiscretization. The present paper describes the structure ofthe discrete-time dynamical system obtained via discretizationon A(Mh)\Mh where Mh is the approximate attractor and A(Mh)is its domain of attraction. The existence of a smooth embeddinginto a continuous-time parallelizable flow is proved. The constructioncan be used to define sections for discretizations and can beinterpreted as a justification of the method of modified equations.  相似文献   
3.
We show the application of a commercially available photopatternable silicone (PPS) that combines the advantageous features of both PDMS and SU-8 to address a critical bioMEMS materials deficiency. Using PPS, we demonstrate the ability to pattern free-standing mechanically isolated elastomeric structures on a silicon substrate: a feat that is challenging to accomplish using soft lithography-based fabrication. PPS readily integrates with many cell-based bioMEMS since it exhibits low autofluorescence and cells easily attach and proliferate on PPS-coated substrates. Because of its inherent photopatternable properties, PPS is compatible with standard microfabrication processes and easily aligns to complex featured substrates on a wafer scale. By leveraging PPS' unique properties, we demonstrate the design of a simple dielectrophoresis-based bioMEMS device for patterning mammalian cells. The key material properties and integration capabilities explored in this work should present new avenues for exploring silicone microstructures for the design and implementation of increasingly complex bioMEMS architectures.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号