首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
化学   5篇
物理学   3篇
  2023年   1篇
  2021年   1篇
  2019年   2篇
  2018年   1篇
  2015年   1篇
  2008年   1篇
  2005年   1篇
排序方式: 共有8条查询结果,搜索用时 609 毫秒
1
1.
We study the electromagnetic form factors and tensor polarization observables of the deuteron in the framework of the hard-wall AdS/QCD model. We find a profile function for the bulk twist \begin{document}$\tau=6$\end{document} vector field, which describes the deuteron on the boundary and fix the infrared boundary cut-off of AdS space in accordance with the ground state mass of the deuteron. We obtain the deuteron charge monopole, quadrupole, and magnetic dipole form factors and tensor polarization observables from the bulk Lagrangians for the deuteron and photon field interactions. We plot the momentum transfer dependence of the form factors and tensor polarization observables and compare our numerical results with those in the soft-wall model and experimental data.  相似文献   
2.
A method for the extraction of valuable compounds from plants and flowers (viz. laurel, rosemary, thyme, oregano and tuberose) is proposed. The dynamic approach allows go-and-backward circulation of the extractant (ethanol) through the solid sample subjected to the action of an ultrasound probe (thus reducing sample amount and avoiding overpressure). A multivariate optimisation study and application of the optimum values of the variables to kinetics studies show that 10 min is sufficient to obtain extraction efficiencies that greatly surpass those provided by steam distillation for essential oils or superheated liquid extraction for these oils and other valuable compounds, with lower costs and higher quality of the extract. The extraction time of the proposed method is 176–165 min shorter than steam distillation and 31–20 min shorter than superheated liquid extraction, depending on the target compound.  相似文献   
3.
In the present study, we investigated the structure-activity relationship of naturally occurring hesperetin derivatives, as well as the effects of their glycosylation on the inhibition of diabetes-related enzyme systems, protein tyrosine phosphatase 1B (PTP1B) and α-glycosidase. Among the tested hesperetin derivatives, hesperetin 5-O-glucoside, a single-glucose-containing flavanone glycoside, significantly inhibited PTP1B with an IC50 value of 37.14 ± 0.07 µM. Hesperetin, which lacks a sugar molecule, was the weakest inhibitor compared to the reference compound, ursolic acid (IC50 = 9.65 ± 0.01 µM). The most active flavanone hesperetin 5-O-glucoside suggested that the position of a sugar moiety at the C-5-position influences the PTP1B inhibition. It was observed that the ability to inhibit PTP1B is dependent on the nature, position, and number of sugar moieties in the flavonoid structure, as well as conjugation. In the kinetic study of PTP1B enzyme inhibition, hesperetin 5-O-glucoside led to mixed-type inhibition. Molecular docking studies revealed that hesperetin 5-O-glucoside had a higher binding affinity with key amino residues, suggesting that this molecule best fits the PTP1B allosteric site cavity. The data reported here support hesperetin 5-O-glucoside as a hit for the design of more potent and selective inhibitors against PTP1B in the search for a new anti-diabetic treatment.  相似文献   
4.
Partial least squares modeling and gas-chromatographic fatty-acid fingerprints are reported as a method for the simultaneous determination of cottonseed, olive, soybean and sunflower edible oil mixtures. In this work, two sets of three- and four-component combinations of oils were prepared, hydrolyzed and the obtained free fatty acids analyzed by gas chromatography (GC) without any further derivatization. The normalized percentages of the myristic (14:0), palmitic (16:0), palmitoleic (16:1), stearic (18:0), oleic (18:1), linoleic (18:2) and linolenic (18:3) acids were chromatographically measured in samples and used for constructing calibration matrix. The cross-validation method was used to select the number of factors and the proposed methods were validated by using two sets of synthetic oil mixture samples. The relative standard error for each oil in mixture samples was less than 10%. This approach allows determining possible adulteration in each of the four edible oils.  相似文献   
5.
The formation of nucleus-acoustic solitary waves (NASWs), and their basic properties in white dwarfs containing non-relativistically or ultra-relativistically degenerate electrons, non-relativistically degenerate light nuclei, and stationary heavy nuclei have been theoretically investigated. The reductive perturbation method, which is valid for small but finite amplitude NASWs, is used. The NASWs are, in fact, associated with the nucleus acoustic (NA) waves in which the inertia is provided by the light nuclei, and restoring force is provided by the degenerate pressure of electrons. On the other hand, stationary heavy nuclei maintain the background charge neutrality condition. It has been found that the presence of the heavy nuclei significantly modify the basic features (polarity, amplitude, width, and speed) of the NASWs. The basic properties are also found to be significantly modified by the effects of ultra-relativistically degenerate electrons and relative number densities of light and heavy nuclei. The implications of our results in white dwarfs are pinpointed.  相似文献   
6.
The nonlinear propagation of ion-acoustic (IA) shock waves (SHWs) in a nonextensive multi-ion plasma system (consisting of inertial positive light ions as well as negative heavy ions, noninertial nonextensive electrons and positrons) has been studied. The reductive perturbation technique has been employed to derive the Burgers equation. The basic properties (polarity, amplitude, width, etc.) of the IA SHWs are found to be significantly modified by the effects of nonextensivity of electrons and positrons, ion kinematic viscosity, temperature ratio of electrons and positrons, etc. It has been observed that SHWs with positive and negative potential are formed depending on the plasma parameters. The findings of our results obtained from this theoretical investigation may be useful in understanding the characteristics of IA SHWs both in laboratory and space plasmas.  相似文献   
7.
Conventional chemotherapy suffers lack of multidrug resistance (MDR), lack of bioavailability, and selectivity. Nano‐sized drug delivery systems (DDS) are developing aimed to solve several limitations of conventional DDS. These systems have been offered for targeting tumor tissue owing to enhanced long circulation time, drug solubility, their retention effect, and improved permeability. As a result, the aim of this project was the design and development of DDS for biomedical applications. For this purpose, gold nanospheres (GNSs) covered by pH‐sensitive thiol‐ended triblock copolymer [poly(methacrylic acid) ‐b‐poly(acrylamide) ‐b‐poly(ε‐caprolactone)‐SH; PMAA‐b‐PAM‐b‐PCL‐SH] for delivery of anticancer drug doxorubicin (DOX). The chemical structures of triblock copolymer were investigated by proton nuclear magnetic resonance (1H NMR) and Fourier transform infrared (FTIR) spectroscopies. 1H NMR spectroscopy and gel permeation chromatography (GPC) were used for calculating the molecular weights of each part in the nanocarrier. The success of coating, GNSs with triblock copolymer was considered by means of dynamic light scattering (DLS), FTIR, ultraviolet‐visible (UV‐Vis), and transmission electron microscopy (TEM) measurement. The pH‐responsive drug release ability, (DOX)‐loading capacity, biocompatibility, and in vitro cytotoxicity effects of the nanocarriers were also studied. As a result, it is expected that the synthesized GNSs@polymer‐DOX considered as a potential application in nanomedicine demand like smart drug delivery, imaging, and chemo‐photothermal therapy.  相似文献   
8.
Cancer is one of the health problems that lead to death in the world, and nanotechnology was shown to have a unique potential to improve the therapeutic efficacy of anticancer agents. The nanosized drug delivery systems (DDSs) have been offered for targeting tumor tissue because of enhanced drug bioavailability and long circulation time. In this context, we reported a facial approach to prepare a novel pH and glutathione‐responsive nanogel. After that, the nanocarriers coupled with highly fluorescent quantum dots were developed. Then methotrexate (MTX) was loaded into and on the surface of nanogels by ionic interaction so that the triggered MTX release ability of the synthesized nanocarriers was verified through the assessment of in vitro drug release at simulated tumor tissue condition. The improved efficiency of the developed nanogels and their targeted performance via conjugation of MTX (as target ligand of folate receptors) were investigated through the various cell cytotoxicity studies such as 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assay, 4′6‐diamidino‐2‐phenylindole (DAPI) staining, and flow cytometry. The results of various cell cytotoxicity studies concluded that the developed smart nanogels have many promising abilities for the targeted MTX delivery to cancer tissues.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号