首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
化学   11篇
数学   1篇
  2012年   1篇
  2011年   2篇
  2009年   1篇
  2007年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1997年   1篇
  1978年   2篇
  1975年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
The refined theory of the electroviscous lift forces is presented for the case when the separation distance between the particle and the wall is larger than the double-layer thickness. The theory is based on the lubrication approximation for motion of a long cylinder near a solid wall in creeping flow. The approximate analytical formula for the lift force valid for Pe相似文献   
2.
An eletrophoretically mediated microanalysis (EMMA) approach, used to perform online chemistry between two small molecules, has been characterized and optimized. The "plug-plug" type EMMA method involved electrophoretic mixing and subsequent reaction of nanoliter plugs of creatinine-containing samples and alkaline picrate (Jaffe reaction) within the confines of the capillary column, which acts as a microreactor. Analyses were performed by pressure injecting a plug of picrate followed by a plug of the creatinine-containing sample. A potential was then applied to electrophoretically mix the two reactants, and an incubation time of up to 6 min allowed the reaction to proceed prior to the application of a 27 kV separation potential with absorbance detection at 485 nm. The use of a 50 microm inner diameter(ID) extended light path capillary (150 microm pathlength) was found to be adequate for determining elevated levels of creatinine in human blood sera, but could not be used to quantify normal levels. Quantification of both normal and elevated levels of creatinine in sera was possible with a 75 microm ID high-sensitivity cell (1200 microm pathlength). Calibration plots using the latter for creatinine in human blood sera spanned the expected clinical range and were linear between 40 microM and 1.2 mM (r2 = 0.996) with an estimated limit of detection of 17 microM (signal-to-noise ratio S/N = 3). A quantitative comparison of results obtained with the reported EMMA method and accepted clinical methodology correlated very well (slope = 1.001).  相似文献   
3.
Capillary zone electrophoresis (CE) under conditions of reversed polarity is used in conjunction with electrochemical detection (EC) at carbon fiber microcylinder electrodes for the selective and sensitive determination of uric acid in human blood serum. Comigration of anions with the electroosmotic flow is accomplished with reversed polarity and the buffer additive cetyltrimethylammonium bromide (CTAB) in a 2-(N-morpholino)ethanesulfonic acid (MES) buffer system, giving rise to rapid and sensitive analyses. Optimal buffer conditions (pH 7.0), detection potential (0.80 V vs. Ag/AgCl), and electrokinetic injection are employed to allow for maximal resolution and signal intensity. Amperometric end-column detection with a carbon fiber microcylinder electrode results in lower limits of detection for uric acid of about 25 nM (ca. 140 amol injected) without the need for decoupling. Linear calibration plots using uric acid standards in water and serum are obtained over a linear range from 5.00 x 10(-4) M to 2.50 x 10(-7) M. Uric acid concentrations obtained for human sera using the CE-EC approach described here are shown to compare favorably to the accepted laboratory values.  相似文献   
4.
We report proton chemical shifts for two model chiral analytes that are commonly used in the study of micellar electrokinetic capillary chromatography (MEKC), R,S-1,1'-binaphthol (1, BN) and R,S-1,1'-binaphthyl-2,2'-diyl hydrogen phosphate (2, BNDHP), in the absence and presence of monomers and micelles of sodium cholate and sodium deoxycholate. The analytes undergo fast exchange in and out of the micelles, which perturbs the analytes' chemical shifts, and which we use to resolve some resonances that are degenerate at both 300 and 600 MHz. Although BN and BNDHP are simple molecules, the proton assignments are only unambiguously established with the aid of the exchange with micelles, an attractive alternative to other methodologies such as the use of paramagnetic shift reagents which may also cause spectral distortions. We rely also upon 2D-NOE spectra of samples in the presence of micelles to perform these assignments. Recently published assignments, which were based upon 2D-COSY spectroscopy, appear to be in error and are corrected here. Finally, we note that these shifts are information-rich reporters on the nature of the interactions of these model analytes with the micelles.  相似文献   
5.
    
Ohne Zusammenfassung  相似文献   
6.
Previous work has demonstrated proof-of-concept for carrying out the clinically useful Jaffe reaction between creatinine and picrate within a capillary tube using electrophoretically mediated microanalysis (EMMA). Here, it is shown that careful control of reagent plug length as well as concentration and pH of the background electrolyte (BGE) can result in a marked improvement in the sensitivity of this assay. Increasing the length of the picrate reagent zone is shown to give rise to as much as a 3–4-fold enhancement, and increasing the concentration and/or pH of the borate buffer also results in an additional, albeit modest, improvement in sensitivity. Interestingly, borate BGE concentrations approaching 100 mM give rise to an unexplained drop in reaction efficiency, an effect which can be avoided by utilizing lower borate concentration with higher pH. The improvements appear to primarily minimize electrodispersion of the picrate reagent, allowing higher picrate concentration in the reaction zone. The same conditions also appear to minimize the electrodispersion of the in-line product as well. With optimized EMMA parameters, the sensitivity of the in-line Jaffe chemistry can be enhanced to an extent that there is no need for the two capillary “high sensitivity” detection system required in previous work. Using optimized conditions, three different human serum samples spanning the expected clinical range of creatinine concentrations were successfully analyzed. Overall, this work illustrates the importance of systematically characterizing the conditions under which EMMA analyses are carried out.  相似文献   
7.
We describe a new, efficient synthesis of DX-9065a ( 4 ), a potent inhibitor of the blood coagulation enzyme factor Xa (fXa) which has previously been prepared in more than 20 steps. We saved approximately 10 steps starting with a Pd-catalyzed cyanation of the triflate 10 of 7-methoxynaphthalen-2-ol ( 9 ). After cleavage of the MeO group with boron tribromide, the triflate 6 was coupled to acrylate 5 in a Heck reaction (→3). The subsequent transformations led to DX-9065 a.  相似文献   
8.
A multiscale approach describing a turbulent flame as a gasdynamic discontinuity [1] on each scale is proposed. The methodology becomes attractive if simulations on individual scales are implemented in a very efficient way. Simulations in a 2D rectangular box with an artificial turbulence field exploiting a robust phase-field/level-set method fit this purpose. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
9.
In this paper, we demonstrate, using both experiment and simulation, how sample zone conductivity can affect plug-plug mixing in small molecule applications of electrophoretically mediated microanalysis (EMMA). The effectiveness of in-line mixing, which is driven by potential, can vary widely with experimental conditions. Using two small molecule systems, the effects of local conductivity differences between analyte plugs, reagent plugs and the BGE on EMMA analyses are examined. Simul 5.0, a dynamic simulation program for CE systems, is used to understand the ionic boundaries and profiles that give rise to the experimentally obtained data for EMMA analyses for (i) creatinine determination via the Jaffe reaction, a reaction involving a neutral and an anion, and (ii) the redox reaction between gallate and 2,6-dichloroindophenol, two anions. Low sample conductivity, which is widely used in CE analyses, can be detrimental for in-line reactions involving a neutral reactant, as rapid migration of the ionic component across a low conductivity neutral zone results in poor reagent plug overlap and low reaction efficiency. Conversely, with two similarly charged reagents, a low conductivity sample plug is advantageous, as it allows field-amplified stacking of the reagents into a tight reaction zone. In addition, the complexity of simultaneously overlapping three reagent zones is considered, and experimental results validate the predictions made by the simulation. The simulations, however, do not appear to predict all of the observed experimental behavior. Overall, by combining experiment with simulation, an enhanced appreciation for the local field effects in EMMA is realized, and general guidelines for an advantageous sample matrix can be established for categories of EMMA analyses.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号