首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   1篇
化学   11篇
物理学   3篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2008年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
排序方式: 共有14条查询结果,搜索用时 17 毫秒
1.
Discrimination between normal and premalignant tissues by fluorescence imaging and/or spectroscopy may be enhanced by a tumor-localizing fluorescent drug. Ethyl Nile Blue A (EtNBA), a dye with no phototoxic activity, was investigated for this purpose. The pharmacokinetics and tissue-localizing properties were investigated in a rat palate model with chemically induced premalignant mucosal lesions (0.5 mg/kg EtNBA intravenous [i.v.]), a hairless mouse model with UVB-induced premalignant skin lesions (1 mg/kg EtNBA intraperitoneal) and in a rat skin-fold observation chamber model on the back of a rat with a transplanted solid tumor (2.5 mg/kg EtNBA i.v.). Fluorescence images and spectra were recorded in vivo (600 nm excitation, 665-900 nm detection) and in frozen tissue sections at several time points after EtNBA administration. In the rat palate the EtNBA fluorescence was maximum almost immediately after injection, whereas in the mouse skin and the observation chamber the fluorescence maximum was reached between 2 and 3 h after injection. EtNBA cleared from tissues after 8-24 h. EtNBA localizes in the transplantable solid tumor, but is not targeted specifically to the dysplastic location in the rat palate and mouse skin. However, in the rat palate the EtNBA fluorescence increased significantly with increasing dysplasia, apparently due to the increasing thickness of the upper keratinized layer of the epithelium where the dye was found to localize. Localization in this layer occurred both in the rat palate and in hairless mouse skin.  相似文献   
2.
We provide a critical examination of two different methods for generating a donor-acceptor electronic coupling trajectory from a molecular dynamics (MD) trajectory and three methods for sampling that coupling trajectory, allowing the modeling of experimental observables directly from the MD simulation. In the first coupling method we perform a single quantum-mechanical (QM) calculation to characterize the excited state behavior, specifically the transition dipole moment, of the fluorescent probe, which is then mapped onto the configuration space sampled by MD. We then utilize these transition dipoles within the ideal dipole approximation (IDA) to determine the electronic coupling between the probes that mediates the transfer of energy. In the second method we perform a QM calculation on each snapshot and use the complete transition densities to calculate the electronic coupling without need for the IDA. The resulting coupling trajectories are then sampled using three methods ranging from an independent sampling of each trajectory point (the independent snapshot method) to a Markov chain treatment that accounts for the dynamics of the coupling in determining effective rates. The results show that the IDA significantly overestimates the energy transfer rate (by a factor of 2.6) during the portions of the trajectory in which the probes are close to each other. Comparison of the sampling methods shows that the Markov chain approach yields more realistic observables at both high and low FRET efficiencies. Differences between the three sampling methods are discussed in terms of the different mechanisms for averaging over structural dynamics in the system. Convergence of the Markov chain method is carefully examined. Together, the methods for estimating coupling and for sampling the coupling provide a mechanism for directly connecting the structural dynamics modeled by MD with fluorescence observables determined through FRET experiments.  相似文献   
3.
A coupled ordinary differential equation lattice model for the CA3 region of the hippocampus (a common location of the epileptic focus) is developed. This model consists of a hexagonal lattice of nodes, each describing a subnetwork consisting of a group of prototypical excitatory pyramidal cells and a group of prototypical inhibitory interneurons connected via on/off excitatory and inhibitory synapses. The nodes communicate using simple rules to simulate the diffusion of extracellular potassium. Both the integration time over which a node's trajectory is integrated before the diffusional event is allowed to occur and the level of inhibition in each node were found to be important parameters. Shorter integration times lead to total synchronization of the lattice (similar to synchronous neural activity occurring during a seizure) whereas longer times cause more random spatiotemporal behavior. Moderately diminished levels of inhibition lead to simple nodal oscillatory behavior. It is postulated that both the lack of inhibition and an alteration in conduction time may be necessary for the development of a behaviorally manifest seizure. (c) 1999 American Institute of Physics.  相似文献   
4.
We have investigated the tumour-localising properties and in vivo fluorescence kinetics of a hexamethoxylated carotenqporphyrin (CP6) in two primary tumour models: UV-B-induced early skin cancer in hairless mice and chemically induced mucosal dysplasia in the rat palate. CP6 fluorescence kinetics are investigated by measuring in vivo fluorescence spectra and images of the mouse skin and the rat palate at different time points after injection. For the tumour-localising properties, microscopic phase-contrast and fluorescence images are recorded. The in vivo fluorescence kinetics in the mouse skin show localization of CP6 in the tumours. However, fluorescence microscopy images show that CP6 localises in the dermis and structures that are not related to the malignant transformation of the mouse skin. The fluorescence kinetics in the rat palate show a significant correlation between the degree of malignancy and the CP6 fluorescence build-up time in the palate. The microscopic images show that CP6 fluorescence localises in the connective tissue and not in the dysplastic epithelium. In conclusion, CP6 does not localise preferentially in (pre-) cancerous tissue in the two primary tumour models studied here, in contrast to reports about localisation of carotenoporphyrins in transplanted tumours. However, the CP6 build-up time in rat palates correlates with the degree of malignancy and this might possibly be a useful parameter in tumour detection.  相似文献   
5.
Although the interaction of low‐spin ferric complexes with nitric oxide has been well studied, examples of stable high‐spin ferric nitrosyls (such as those that could be expected to form at typical non‐heme iron sites in biology) are extremely rare. Using the TMG3tren co‐ligand, we have prepared a high‐spin ferric NO adduct ({FeNO}6 complex) via electrochemical or chemical oxidation of the corresponding high‐spin ferrous NO {FeNO}7 complex. The {FeNO}6 compound is characterized by UV/Visible and IR spectroelectrochemistry, Mössbauer and NMR spectroscopy, X‐ray crystallography, and DFT calculations. The data show that its electronic structure is best described as a high‐spin iron(IV) center bound to a triplet NO? ligand with a very covalent iron?NO bond. This finding demonstrates that this high‐spin iron nitrosyl compound undergoes iron‐centered redox chemistry, leading to fundamentally different properties than corresponding low‐spin compounds, which undergo NO‐centered redox transformations.  相似文献   
6.
We report mechanistic studies on the insertion reactions of [(NHC)Cu(μ-H)]2 complexes with carbonyl substrates by UV-vis and 1H NMR spectroscopic kinetic studies, H/D isotopic labelling, and X-ray crystallography. The results of these comprehensive studies show that the insertion of Cu-H with an aldehyde, ketone, activated ester/amide, and unactivated amide consist of two different rate limiting steps: the formation of Cu-H monomer from Cu-H dimer for more electrophilic substrates, and hydride transfer from a transient Cu-H monomer for less electrophilic substrates. We also report spectroscopic and crystallographic characterization of rare Cu-hemiacetalate and Cu-hemiaminalate moieties from the insertion of an ester or amide into the Cu−H bond.  相似文献   
7.
This study presents a new model to simulate the electric behaviour of one-dimensional ionised flames and to predict the electric currents in these flames. The model utilises Poisson’s equation to compute the electric potential. A multi-component diffusion model, including the influence of an electric field, is used to model the diffusion of neutral and charged species. The model is incorporated into the existing CHEM1D flame simulation software. A comparison between the computed electric currents and experimental values from the literature shows good qualitative agreement for the voltage–current characteristic. Physical phenomena, such as saturation and the diodic effect, are captured by the model. The dependence of the saturation current on the equivalence ratio is also captured well for equivalence ratios between 0.6 and 1.2. Simulations show a clear relation between the saturation current and the total number of charged particles created. The model shows that the potential at which the electric field saturates is strongly dependent on the recombination rate and the diffusivity of the charged particles. The onset of saturation occurs because most created charged particles are withdrawn from the flame and because the electric field effects start dominating over mass based diffusion. It is shown that this knowledge can be used to optimise ionisation chemistry mechanisms. It is shown numerically that the so-called diodic effect is caused primarily by the distance the heavier cations have to travel to the cathode.  相似文献   
8.
9.
Most ligand designs for reactions catalyzed by (NHC)Cu–H (NHC = N-heterocyclic carbene ligand) have focused on introducing steric bulk near the Cu center. Here, we evaluate the effect of remote ligand modification in a series of [(NHC)CuH]2 in which the para substituent (R) on the N-aryl groups of the NHC is Me, Et, tBu, OMe or Cl. Although the R group is distant (6 bonds away) from the reactive Cu center, the complexes have different spectroscopic signatures. Kinetics studies of the insertion of ketone, aldimine, alkyne, and unactivated α-olefin substrates reveal that Cu–H complexes with bulky or electron-rich R groups undergo faster substrate insertion. The predominant cause of this phenomenon is destabilization of the [(NHC)CuH]2 dimer relative to the (NHC)Cu–H monomer, resulting in faster formation of Cu–H monomer. These findings indicate that remote functionalization of NHCs is a compelling strategy for accelerating the rate of substrate insertion with Cu–H species.

Remote modification of an N-heterocyclic carbene ligand with bulky or electron-rich groups in [(NHC)Cu(μ-H)]2 increases the rate of substrate insertion, which kinetics studies suggest arises from changes in the Cu–H monomer–dimer equilibrium.  相似文献   
10.
We report mechanistic studies on the insertion reactions of [(NHC)Cu(μ‐H)]2 complexes with carbonyl substrates by UV‐vis and 1H NMR spectroscopic kinetic studies, H/D isotopic labelling, and X‐ray crystallography. The results of these comprehensive studies show that the insertion of Cu‐H with an aldehyde, ketone, activated ester/amide, and unactivated amide consist of two different rate limiting steps: the formation of Cu‐H monomer from Cu‐H dimer for more electrophilic substrates, and hydride transfer from a transient Cu‐H monomer for less electrophilic substrates. We also report spectroscopic and crystallographic characterization of rare Cu‐hemiacetalate and Cu‐hemiaminalate moieties from the insertion of an ester or amide into the Cu?H bond.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号