首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
化学   13篇
力学   1篇
物理学   10篇
  2014年   1篇
  2013年   1篇
  2008年   2篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1980年   1篇
排序方式: 共有24条查询结果,搜索用时 31 毫秒
1.
2.
We have analyzed surface diffusion properties of a variant of Thermomyces lanuginosa lipase (TLL) on hydrophilic silica and silica methylated with dichlorodimethylsilane (DDS) or octadecyltrichlorosilane (OTS). For this study a novel method for analysis of diffusion on solid surfaces was developed. The method is based on fluorescence recovery after photobleaching using confocal microscopy. When a rectangular area of the sample was photobleached, fluorescence recovery could be analyzed as one-dimensional diffusion, resulting in simplified mathematical expressions for fitting the data. The method was initially tested by measuring bovine serum albumin diffusion on glass, which led to a diffusion coefficient in good correspondence to earlier reports. For the analysis of TLL diffusion, ellipsometry data of TLL adsorption were used to calibrate fluorescence intensity to surface density of lipase, enabling measurements of the diffusion coefficient at different surface densities. The average diffusion coefficient was calculated in two time intervals after adsorption. Mobile fraction and diffusion coefficient were lowest on the OTS surface, when extrapolated to infinite surface dilution. Moreover, the diffusion rate decreased with time on the hydrophobic surfaces. Our observations can be explained by the surface dependence on the distribution of orientations and conformations of adsorbed TLL, where the transition from the closed to the catalytically active open and more hydrophobic structure is important.  相似文献   
3.
4.
Quantification of phosphorylated sugar constituents of lipopolysaccharides has been performed by the following sequence: dephosphorylation by treatment with hydrofluoric acid, cleavage to monomeric constituents by methanolysis and analysis of the released sugars by capillary gas chromatography. Lipopolysaccharides of Salmonella minnesota Rd1P+, Bordetella pertussis NIH 114 and Vibrio cholerae, NAG and 95R strains, were used as model substances. Comparison of the chromatographic data obtained from hydrofluoric acid-treated and untreated lipopolysaccharide preparations indicated that all lipopolysaccharides examined contained one moiety of glucosamine bound to phosphate in a stable linkage. 2-Keto-3-deoxyoctonic acid appeared phosphorylated to a variable extent. Lipopolysaccharides of the two V. cholerae strains contained one moiety of fully phosphorylated 2-keto-3-deoxyoctonic acid, whereas in that of S. minnesota Rd1P+ only one of the three moieties was phosphorylated. Lipopolysaccharide of B. pertussis had one moiety of 2-keto-3-deoxyoctonic acid, ca. 70% phosphorylated. All four of the preparations examined contained L-glycero-D-manno-heptose in amounts varying from 2.6 to 5.2 moieties. In the lipopolysaccharides of B. pertussis and strain 95R of V. cholerae this sugar was unphosphorylated, whereas the two remaining strains contained one phosphorylated moiety of this sugar. Phosphorylated lipopolysaccharide constituents can be analysed by this approach on a 50-100 micrograms scale.  相似文献   
5.
Arylation of 1-(methoxycarbonyl)-2,5-dihydropyrrole under standard Heck reaction conditions produces a mixture of compounds. The olefin undergoes two types of palladium-catalyzed reactions: (a) arylation to provide C-3 arylated derivatives and (b) competing double bond isomerization. Addition of silver carbonate and thallium acetate fully suppressed the isomerization, and good yields of C-3 substituted compounds were achieved after arylation with aryl halides. With regard to aryl triflates as arylating agents, addition of lithium chloride was necessary to promote the Heck reaction. This additive excluded the use of silver and thallium salts, but high regioselectivity and good yields could be obtained by employing tri-2-furylphosphine as ligand. Arylation was rendered both regioselective and enantioselective (58% ee) with 1-naphthyl triflate as substrate utilizing a (R)-BINAP/thallium acetate combination. The C-3 arylated enamides were converted further into the corresponding 3-arylpyrrolidines.  相似文献   
6.
This work was performed with the aim of comparing protein adsorption results obtained from the recently developed dual polarization interferometry (DPI) with the well-established surface plasmon resonance (SPR) technique. Both techniques use an evanescent field as the sensing element but completely different methods to calculate the adsorbed mass. As a test system we used adsorption of the lipase from Thermomyces lanuginosus (TLL) on C18 surfaces. The adsorbed amount calculated with both techniques is in good agreement, with both adsorption isotherms saturating at 1.30–1.35 mg/m2 at TLL concentrations of 1000 nM and above. Therefore, this supports the use of both SPR and DPI as tools for studying protein adsorption, which is very important when comparing adsorption data obtained from the use different techniques. Due to the spot sensing in SPR, this technique is recommended for initial kinetic studies, whereas DPI is more accurate when the refractive index and thickness of the adsorbed layer is of more interest.  相似文献   
7.
We have studied the mobility of active and inactive Thermomyces lanuginosus lipase (TLL) on a spin-coated trimyristin substrate surface using fluorescence recovery after photobleaching (FRAP) in a confocal microscopy setup. By photobleaching a circular spot of fluorescently labeled TLL adsorbed on a smooth trimyristin surface, both the diffusion coefficient D and the mobile fraction f could be quantified. FRAP was performed on surfaces with different surface density of lipase and as a function of time after adsorption. The data showed that the mobility of TLL was significantly higher on the trimyristin substrate surfaces compared to our previous studies on hydrophobic model surfaces. For both lipase variants, the diffusion decreased to similar rates at high relative surface density of lipase, suggesting that crowding effects are dominant with higher adsorbed amount of lipase. However, the diffusion coefficient at extrapolated infinite surface dilution, D0, was higher for the active TLL compared to the inactive (D0 = 17.9 x 10(-11) cm2/s vs D0 = 4.1 x 10(-11) cm2/s, data for the first time interval after adsorption). Moreover, the diffusion decreased with time after adsorption, most evident for the active TLL. We explain the results by product inhibition, i.e., that the accumulation of negatively charged fatty acid products decreased the diffusion rate of active lipases with time. This was supported by sequential adsorption experiments, where the adsorbed amount under flow conditions was studied as a function of time after adsorption. A second injection of lipase led to a significantly lower increase in adsorbed amount when the trimyristin surface was pretreated with active TLL compared to pretreatment of inactive TLL.  相似文献   
8.
The mobility of single lipase molecules has been analyzed using single molecule tracking on a trimyristin substrate surface. This was achieved by conjugating lipases to quantum dots and imaging on spin-coated trimyristin surfaces by means of confocal laser scanning microscopy. Image series of single lipase molecules were collected, and the diffusion coefficient was quantified by analyzing the mean square displacement of the calculated trajectories. During no-flow conditions, the lipase diffusion coefficient was (8.0+/-5.0)x10(-10) cm2/s. The trajectories had a "bead on a string" appearance, with the lipase molecule restricted in certain regions of the surface and then migrating to another region where the restricted diffusion continued. This gave rise to clusters in the trajectories. When a flow was applied to the system, the total distance and average step length between the clusters increased, but the restricted diffusion in the cluster regions was unaffected. This can be explained by the lipase operating in two different modes on the surface. In the cluster regions, the lipase is likely oriented with the active site toward the surface and hydrolyzes the substrate. Between these regions, a diffusion process is proposed where the lipase is in contact with the surface but affected by the external flow.  相似文献   
9.
With the aim of being able to manipulate the processes involved in interfacial catalysis, we have studied the effects of a mixture of nonionic/anionic surfactants, C12E6/LAS (1:2 mol %), on the adsorption and surface mobility of a lipase obtained from Thermomyces lanuginosus (TLL). Surface plasmon resonance (SPR) and ellipsometry were used to analyze the competitive adsorption process between surfactants and TLL onto hydrophobic model surfaces intended to mimic an oily substrate for the lipase. We obtained the surface diffusion coefficient of a fluorescently labeled TLL variant on silica silanized with octadecyltrichlorosilane (OTS) by fluorescence recovery after photobleaching (FRAP) on a confocal laser scanning microscope. By means of ellipsometry we calibrated the fluorescence intensity with the surface density of the lipase. The TLL diffusion was measured at different surface densities of the enzyme and at two time intervals after coadsorption with different concentrations of C12E6/LAS. The surfactant concentrations were chosen to represent concentrations below the critical micelle concentration (CMC), in the CMC region, and above the CMC. The apparent TLL surface diffusion was extrapolated to infinite surface dilution, D0. We found that the presence of surfactants strongly modulated the surface mobility of TLL: with D(0) = 0.8 x 10(-11) cm2/s without surfactants and D0 = 13.1 x 10(-11) cm2/s with surfactants above the CMC. The increase in lipase mobility on passing the CMC was also accompanied by a 2-fold increase in the mobile fraction of TLL. SPR analysis revealed that surface bound TLL was displaced by C12E6/LAS in a concentration-dependent manner, suggesting that the observed increase in surface mobility imparts bulk-mediated diffusion and so-called rebinding of TLL to the surface. Our combined results on lipase/surfactant competitive adsorption and lipase surface mobility show how surfactants may play an important role in regulating interfacial catalysis from physiological digestion to technical applications such as detergency.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号