首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   1篇
化学   36篇
晶体学   1篇
数学   1篇
物理学   14篇
  2022年   3篇
  2021年   9篇
  2020年   2篇
  2019年   6篇
  2018年   4篇
  2017年   3篇
  2016年   1篇
  2014年   5篇
  2013年   6篇
  2012年   4篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
  2007年   1篇
  1989年   1篇
排序方式: 共有52条查询结果,搜索用时 31 毫秒
1.
Summary We describe here a sensitive, selective and rapid method to quantitate plasma catecholamines, especially dopamine, using high-performance liquid chromatography with electrochemical detection. This method requires a 10-minute run time and has a threshold for detection of 2 picograms, (10pg/ml).A number of commonly employed mobile phases for catecholamine analysis have been tested and have failed to detect dopamine in biological samples. Neither acetonitrile (3–7%) or methanol, (5–8%) in the mobile phase has produced consistently interpretable data either due to inability to detect or interference from co-eluting substances. Optimal detection was achieved with a mobile phase containing sodium acetate (6.8g), citric acid (5.9g), EDTA (48mg), di-n-butylamine (270l), Na-1-octane sulfate (850mg), methanol (100 ml) (amounts refer to 1 liter aqueous solution) (pH 4.3). The mobile phase was passed through a Waters 5 resolve C18 column using a Waters 590 pump and m460 electrochemical detector and 740 data module, Flow rate was 0.9ml/min. Using this method, normal values in human and swine left ventricular myocardium and human and swine plasma have been established for norepinephrine, epinephrine, and dopamine.  相似文献   
2.
In the present report, Nickel oxide nanoparticles (NiONPs) were synthesized using Rhamnus virgata (Roxb.) (Family: Rhamnaceae) as a potential stabilizing, reducing and chelating agent. The formation, morphology, structure and other physicochemical properties of resulting NiONPs were characterized by Ultra violet spectroscopy, X‐ray diffraction (XRD), Fourier Transform Infrared analysis (FTIR), Scanning electron microscopy (SEM), Energy‐dispersive‐spectroscopy (EDS), Transmission electron microscopy (TEM), Raman spectroscopy and dynamic light scattering (DLS). Detailed in vitro biological activities revealed significant therapeutic potential for NiONPs. The antimicrobial efficacy of biogenic NiONPs was demonstrated against five different gram positive and gram negative bacterial strains. Klebsiella pneumoniae and Pseudomonas aeruginosa (MIC: 125 μg/mL) were found to be the least susceptible and Bacillus subtilis (MIC: 31.25 μg/mL) was found to be the most susceptible strain to NiONPs. Biogenic NiONPs were reported to be highly potent against HepG2 cells (IC50: 29.68 μg/ml). Moderate antileishmanial activity against Leishmania tropica (KMH23) promastigotes (IC50: 10.62 μg/ml) and amastigotes (IC50: 27.58 μg/ml) cultures are reported. The cytotoxic activity was studied using brine shrimps and their IC50 value was recorded as 43.73 μg/ml. For toxicological assessment, NiONPs were found compatible towards human RBCs (IC50: > 200 μg/ml) and macrophages (IC50: > 200 μg/ml), deeming particles safe for various applications in nanomedicines. Moderate antioxidant activities: total antioxidant capacity (TAC) (51.43%), 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) activity (70.36%) and total reducing power (TRP) (45%) are reported for NiONPs. In addition, protein kinase and alpha amylase inhibition assays were also performed. Our results concluded that Rhamnus virgata synthesized NiONPs could find important biomedical applications with low cytotoxicity to normal cells.  相似文献   
3.
In the current study, in vitro antimicrobial and antioxidant activities and in vivo anti-inflammatory and analgesic activities of Scutellaria edelbergii Rech. f. (crude extract and subfractions, i.e., n-hexane, ethyl acetate (EtOAc), chloroform, n-butanol (n-BuOH) and aqueous) were explored. Initially, extraction and fractionation of the selected medicinal plant were carried out, followed by phytochemical qualitative tests, which were mostly positive for all the extracts. EtOAc fraction possessed a significant amount of phenolic (79.2 ± 0.30 mg GAE/g) and flavonoid (84.0 ± 0.39 mg QE/g) content. The EtOAc fraction of S. edelbergii exhibited appreciable antibacterial activity against Gram-negative (Escherichia coli and Klebsiella pneumoniae) strains and significant zones of inhibition were observed against Gram-positive bacterial strains (Bacillus subtilis and Staphylococcus aureus). However, it was found inactive against Candida Albicans and Fusarium oxysporum fungal strains. The chloroform fraction was the most effective with an IC50 value of 172 and 74 µg/mL against DPPH (1,1-Diphenyl-2-picryl-hydrazyl) and ABTS assays, in comparison with standard ascorbic acid 59 and 63 µg/mL, respectively. Moreover, the EtOAc fraction displayed significant in vivo anti-inflammatory activity (54%) using carrageenan-induced assay and significant (55%) in vivo analgesic activity using acetic acid-induced writing assay. In addition, nine known compounds, ursolic acid (UA), ovaul (OV), oleanolic acid (OA), β-sitosterol (BS), micromeric acid (MA), taraxasterol acetate (TA), 5,3′,4′-trihydroxy-7-methoxy flavone (FL-1), 5,7,4′-trihydroxy-6,3′-dimiethoxyflavone (FL-2) and 7-methoxy catechin (FL-3), were isolated from methanolic extract of S. edelbergii. These constituents have never been obtained from this source. The structures of all the isolated constituents were elucidated by spectroscopic means. In conclusion, the EtOAc fraction and all other fractions of S. edelbergii, in general, displayed a significant role as antibacterial, free radical scavenger, anti-inflammatory and analgesic agents which may be due to the presence of these constituents and other flavonoids.  相似文献   
4.
The present research work describes the productive synthesis of novel bisbenzopyronopyran derivatives 4(a-h) and 5(a-h) via the photocyclization reactions of bischromones 3(a-h) under the inert conditions. The latter compounds have been realized efficiently through the O-alkylation reactions of the 3-hydroxychromone 2 with suitable dihalogenated aliphatic/aromatic/heteroaromatic reagents in the presence of dry acetone/anhydrous K2CO3/Bu4N+I (PTC). The cyclization reaction of chalcone 1 under the Algar-Flynn-Oyamada reaction conditions (KOH/H2O2) could results in the formation of compound 2 in the good yield. The structural scaffolds of the newly prepared bischromones and resultant bisbenzopyronopyrans have been certified from the meticulous analysis of their various spectroscopic parameters such as UV-Vis, IR, 1H/13C-NMR, and ESI-MS. It was found that o/m/p-xylene and pyridine-linked final symmetrical bistetracycles exhibited higher antimicrobial potencies as compared to alkyl chain-linked cyclized products. The bischromones 3(a-h) could be able to endow modest level of antimicrobial behavior.  相似文献   
5.
Nanocrystalline diamond (NCD) films were grown on silicon substrates by hot filament chemical vapor deposition in Ar/N2/CH4 gas mixtures. The effects of seeding process prior to deposition, the total gas pressure, and concentration of nitrogen on the grain size, morphology and bonding nature in HFCVD technique were investigated. The results indicated that a low total gas pressure is favorable for nanosized diamond crystallites. Films micrograph obtained from scanning electron microscopy showed diamond nanograins elongated with the addition of nitrogen in the plasma. Crystal structure investigations were carried out by X-ray diffraction measurements for deposited films. An increase in the size of crystallite is also observed from XRD measurements in NCD film when nitrogen was added in plasma. From Raman spectra, it was observed that the relative intensity of G peak increases indicating more graphite content after nitrogen added in the plasma. The effects of the nitrogen incorporation in nanocrystalline films in HFCVD are discussed.  相似文献   
6.
Hydrogels, having nanomaterials (e.g. nanoparticles and nanorods) incorporated inside their polymeric meshes, are generally called hybrid gels/hydrogels. These assemblies combine the properties of both hydrogels and nanomaterials in one system. These responsive hybrid hydrogels, particularly polymerized N-isopropylacrylamide (PoNip) polymeric gels, have been extensively exploited for various multi-disciplinary applications in the literature over the past two decades because of their unique and exquisite particulars. Next generation assemblies have been prepared by using the smart nature of these gels toward the general incentives (e.g. temperature, ionic strength, and pH) in the fields of nanocatalysis, water purification, drug delivery, photonics, and optics. This review presents an overview of the PoNip hybrid assemblies engineered over the past 7 years i.e. 2010–2016 and extensively discusses the interaction of the incorporated nanomaterial with the polymeric chains of the hydrogels as it is the most significant factor which makes these assemblies attractive for all the associated applications. Moreover, this article also describes the preparative routes, properties, classification, and applications of these hybrid hydrogels in the fields of medicine, environment, catalysis, and nanotechnology.  相似文献   
7.
The effect of nitrogen addition in the feed gas on the finally incorporated amount of hydrogen in the diamond nanorods (DNRs) thin films has been investigated. The Raman spectroscopy measurements helped to understand the structural and quality changes with increasing nitrogen gas flow rate during CVD deposition. The hydrogen concentration was measured with 3.0 MeV He2+ beam using elastic recoil detection analysis technique and it was found that with the addition of nitrogen, the hydrogen concentration was increased. The results of non-Rutherford backscattering spectroscopy (NRBS) used to measure the amount of nitrogen in the DNRs thin films have shown that the incorporated nitrogen is below the detection limit of NRBS technique. Our results suggested that the addition of nitrogen has affected the overall quality of diamond films in two ways; increasing the thickness of diamond films by increasing the non-diamond carbon content and increasing the hydrogen impurity incorporation. The role of nitrogen additive on diamond growth and hydrogen incorporation is discussed.  相似文献   
8.
In the present study, plant‐mediated synthesis of iron oxide nanoparticles (IONPs) using leaves extract of Rhamnus virgata (Roxb.) as a potential stabilizing, reducing and chelating agent is reported. The biogenic IONPs are extensively characterized for their physical and biological properties. The morphology, structure and physicochemical properties of biogenic IONPs were characterized using ultraviolet spectroscopy, X‐ray diffraction, Fourier transform‐infrared analysis, scanning electron microscopy, energy‐dispersive spectroscopy, transmission electron microscopy, Raman spectroscopy and dynamic light scattering. The Scherrer equation deduced a mean crystallite size of ~20 nm for IONPs. Detailed in vitro biological activities revealed significant therapeutic potentials for IONPs. Potential antibacterial and antifungal activities are reported for IONPs. Bioinspired IONPs have shown potential results against HepG2 cells (IC50: 13.47 μg/ml). Dose‐dependent cytotoxicity assays were revealed against Leishmania tropica (KMH23) promastigotes (IC50: 8.08 μg/ml) and amastigotes (IC50: 20.82 μg/ml) using different concentrations of IONPs (1–200 μg/ml). The cytotoxic activity was also studied using brine shrimps, and their IC50 value was calculated as 32.41 μg/ml. Significant antioxidant [TAC (51.4%), DPPH (79.4%) and total reducing power (62%)], protein kinase and alpha amylase inhibition assays were revealed. The biocompatibility assays using red blood cells (> 200 μg/ml) and macrophages (> 200 μg/ml) confirmed the biosafe nature of IONPs. In conclusion, bioinspired IONPs have shown potential biological applications and should be subjected to further research work to develop their nano‐pharmacological relevance in biomedical applications.  相似文献   
9.
Blends of poly(2‐vinyl pyridine)‐block‐poly(methyl methacrylate) (P2VP‐b‐PMMA) and poly(hydroxyether of bisphenol A) (phenoxy) were prepared by solvent casting from chloroform solution. The specific interactions, phase behavior and nanostructure morphologies of these blends were investigated by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), dynamic light scattering (DLS), atomic force microscopy (AFM), and transmission electron microscopy (TEM). In this block copolymer/homopolymer blend system, it is established that competitive hydrogen bonding exists as both blocks of the P2VP‐b‐PMMA are capable of forming intermolecular hydrogen bonds with phenoxy. It was observed that the interaction between phenoxy and P2VP is stronger than that between phenoxy and PMMA. This imbalance in the intermolecular interactions and the repulsions between the two blocks of the diblock copolymer lead to a variety of phase morphologies. At low phenoxy concentration, spherical micelles are observed. As the concentration increases, PMMA begins to interact with phenoxy, leading to the changes of morphology from spherical to wormlike micelles and finally forms a homogenous system. A model is proposed to describe the self‐assembled nanostructures of the P2VP‐b‐PMMA/phenoxy blends, and the competitive hydrogen bonding is responsible for the morphological changes. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1894–1905, 2009  相似文献   
10.
An economical, fast, sensitive and selective method for the determination of uranium (VI) from sulfate media based on the flow injection on-line preconcentration in a minicolumn having amberlite IRA-402 (strong anion exchange) resin is described. Uranium (VI) was selectively adsorbed on the resin as uranyl trisulfate complex from aqueous solution of pH 2 in the minicolumn (2.56 mm i.d. and 7.5 cm in length) at a flow rate of 10 ml min?1. The adsorbed uranyl trisulfate complex was eluted by HClO4 (0.1 mol l?1, 6.5 ml min?1) and mixed with arsenazo-III (0.05 %, 6.5 ml min?1), and passed through the flow through cell of spectrophotometer where its absorbance was measured at 653 nm. Various parameters affecting adsorption and elution of the uranium complex were optimized. For data analyses peak absorbance was used. For 60 and 180 s preconcentration time, enrichment factors (EF) 20 and 40, sampling frequency (SF) 45 and 18 h?1; and detection limits (DL) (3σ) 14.2 and 8.6 μg l?1 were obtained, respectively. To enhance the sensitivity of the system, two minicolumns (described above) were used for simultaneous preconcentration and elution purpose. For 60 and 180 s preconcentration time, EF 30 and 50, SF 42 and 17 h?1 and DL (3σ) 4.4 and 3.44 μg l?1 were obtained, respectively. The effect of various anions and cations was studied for single column manifold. High selectivity of this method was observed. All the anions and cations studied did not interfere up to 330 times higher mass ratio to 300 μg l?1 U (VI) except Th(IV) which was tolerated up to 133 times by the addition of washing step in the manifold. The method based on single column manifold was applied on the spiked tap water, biological sample CRM (IAEA-V4) and synthetic leach liquor solution and good recovery was obtained. The method based on dual column manifold was validated on lake sediment SL-1 (CRM) and the results obtained were in good agreement at 95 % confidence level with the given value.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号