首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
化学   8篇
  2020年   1篇
  2010年   2篇
  2005年   1篇
  2004年   3篇
  2003年   1篇
排序方式: 共有8条查询结果,搜索用时 406 毫秒
1
1.
Gas chromatography/ion trap mass spectrometry with in-source ionization and dissociation was used in positive-ion chemical ionization (PICI) mode for the determination of organophosphate triesters in indoor air. These compounds are widely used as additive flame retardants and plasticizers in different types of materials and have become ubiquitous pollutants in indoor environments. When using collision-induced dissociation in PICI mode the fragmentation of the organophosphate triesters can be performed in a more controllable way than in electron ionization (EI) mode. The developed selected-reaction monitoring method provided high selectivity for the investigated compounds. For 8-h air measurements (corresponding to 1.5 m3 of sampled air) the limit of detection of the method was determined to be in the range 0.1-1.4 ng m(-3), which is comparable with nitrogen-phosphorus detection and about 50-fold lower than when using EI in selected-ion monitoring mode. The presented method was applied to samples from three common indoor environments, in which a number of organophosphate triesters were identified and quantified. The dominating compound was found to be tris(2-chloropropyl) phosphate, which occurred at levels up to 0.8 microg m(-3).  相似文献   
2.
Solid phase micro-extraction (SPME) was used to collect air samples of semi-volatile organophosphate triesters, a group of compounds that are commonly used as flame retardants/plasticisers and have therefore become ubiquitous indoor air pollutants. SPME is a simple sampling technique with several major advantages, including time-efficiency and low solvent consumption. Analyte losses also tend to be relatively low. In quantitative SPME, measurements are normally taken after the analyte has reached partitioning equilibrium between the fibre and the sample matrix. However, equilibrium sampling of semi-volatile compounds in air with SPME often takes several hours. Clearly, time-weighted average (TWA) sampling using SPME under non-equilibrium conditions could be considerably faster. So, in this study, the possibility of sampling organophosphate triesters under non-equilibrium conditions was tested. The most important variables proved to be the fibre coating and the air velocity during sampling. The highest uptake rate was obtained with polydimethylsiloxane (PDMS, 100 m). The rate for this fibre was 150-fold higher than obtained with PDMS/DVB and Carbowax/DVB, both 65 m. Contrary to theoretical expectations, the uptake rate appeared to be constant for all tested air velocities over the fibre surface >7 cm/s. These findings suggest that the uptake rate for non-equilibrium SPME sampling is independent of the sampling flow above this flow rate, which would considerably enhance the robustness and flexibility of the method. Applying this method for TWA sampling, with sampling periods of 1 h, detection limits lower than 2 ng/m3 for individual organophosphate esters were obtained.  相似文献   
3.
Metal-free porphyrin-dendrimers provide a convenient platform for the construction of membrane-impermeable ratiometric probes for pH measurements in compartmentalized biological systems. In all previously reported molecules, electrostatic stabilization (shielding) of the core porphyrin by peripheral negative charges (carboxylates) was required to shift the intrinsically low porphyrin protonation pK(a)'s into the physiological pH range (pH 6-8). However, binding of metal cations (e.g., K(+), Na(+), Ca(2+), Mg(2+)) by the carboxylate groups on the dendrimer could affect the protonation behavior of such probes in biological environments. Here we present a dendritic pH nanoprobe based on a highly non-planar tetraaryltetracyclohexenoporphyrin (Ar(4)TCHP), whose intrinsic protonation pK(a)'s are significantly higher than those of regular tetraarylporphyrins, thereby eliminating the need for electrostatic core shielding. The porphyrin was modified with eight Newkome-type dendrons and PEGylated at the periphery, rendering a neutral water-soluble probe (TCHpH), suitable for measurements in the physiological pH range. The protonation of TCHpH could be followed by absorption (e.g., ε(Soret)(dication)~270,000 M(-1) cm(-1)) or by fluorescence. Unlike most tetraarylporphyrins, TCHpH is protonated in two distinct steps (pK(a)'s 7.8 and 6.0). In the region between the pK(a)'s, an intermediate species with a well-defined spectroscopic signature, presumably a TCHpH monocation, could be observed in the mixture. The performance of TCHpH was evaluated by pH gradient measurements in large unilamellar vesicles. The probe was retained inside the vesicles and did not pass through and/or interact with vesicle membranes, proving useful for quantification of proton transport across phospholipid bilayers. To interpret the protonation behavior of TCHpH we developed a model relating structural changes on the porphyrin macrocycle upon protonation to its basicity. The model was validated by density functional theory (DFT) calculations performed on a planar and non-planar porphyrin, making it possible to rationalize higher protonation pK(a)'s of non-planar porphyrins as well as the easier observation of their monocations.  相似文献   
4.
We report and compare highly resolved, simultaneously recorded absorption and CD spectra of active Photosystem II (PSII) samples in the range 440-750 nm. From an appropriately scaled comparison of spinach membrane fragment (BBY) and PSII core spectra, we show that key features of the core spectrum are quantitatively represented in the BBY data. PSII from the cyanobacterium Synechocystis 6803 display spectral features in the Qy region of comparable width (50-70 cm(-1) fwhm) to those seen in plant PSII but the energies of the resolved features are distinctly different. A comparison of spectra taken of PSII poised in the S1QA and S2QA(-) redox states reveals electrochromic shifts largely attributable to the influence of QA(-) on Pheo(D1). This allows accurate determinations of the Pheo(D1) Qy absorption positions to be at 685.0 nm for spinach cores, 685.8 nm for BBY particles, and 683.0 nm for Synechocystis. These are discussed in terms of earlier reports of the Pheo(D1) energies in PSII. The Qx transition of Pheo(D1) undergoes a blue shift upon Q(A) reduction, and we place a lower limit of 80 cm(-1) on this shift in plant material. By comparing the magnitude of the Stark shifts of the Qx and Qy bands of Pheo(D1), the directions of the transition-induced dipole moment changes, Deltamu(x) and Deltamu(y), for this functionally important pigment could be determined, assuming normal magnitudes of the Deltamu's. Consequently, Deltamu(x) and Deltamu(y) are determined to be approximately orthogonal to the directions expected for these transitions. Low-fluence illumination experiments at 1.7 K resulted in very efficient formation of QA(-). This was accompanied by cyt b(559) oxidation in BBYs and carotenoid oxidation in cores. No chlorophyll oxidation was observed. Our data allow us to estimate the quantum efficiency of PSII at this temperature to be of the order 0.1-1. No Stark shift associated with the S1-to-S2 transition of the Mn cluster is evident in our samples. The similarity of Stark data in plants and Synechocystis points to minimal interactions of Pheo(D1) with nearby chloropyll pigments in active PSII preparations. This appears to be at variance with interpretations of experiments performed with inactive solubilized reaction-center preparations.  相似文献   
5.
Methodology for time-weighted average (TWA) air measurements of semivolatile organophosphate triesters, widely used flame-retardants and plasticizers, and common indoor pollutants is presented. Dynamic non-equilibrium solid-phase microextraction (SPME) for air sampling, in combination with GC/PICI and ion trap tandem MS, yields a fast, almost solvent-free method with low detection limits. Methanol was used as reagent gas for PICI, yielding stable protonated molecules and few fragments. A field sampler, in which a pumped airflow over three polydimethylsiloxane (PDMS) 100-μm fibers in series was applied, was constructed, evaluated, and used for the measurements. The method LODs were in the range 2–26 ng m−3 for a sampling period of 2 h. The uptake on the SPME fibers was shown to be about five times faster for triphenyl phosphate compared to the other investigated organophosphate esters, most likely due to more lipophilic properties of the aromatic compound. The boundary layer for triphenyl phosphate when using a 100-μm PDMS sorbent was determined to 0.08 mm at a linear air velocity of 34 cm s−1. Five different organophosphate triesters were detected in air from a laboratory and a lecture hall, at concentrations ranging from 7 ng m−3 up to 2.8 μg m−3.  相似文献   
6.
As an inexpensive, simple, and low-solvent consuming extraction technique, the suitability of solid-phase microextraction (SPME) with polydimethylsiloxane (PDMS) sorbent was investigated as a quantitative method for sampling gaseous organophosphate triesters in air. These compounds have become ubiquitous in indoor air, because of their widespread use as additive flame retardants/plasticizers in various indoor materials. Results obtained by sampling these compounds at controlled air concentrations using SPME and active sampling on glass fibre filters were compared to evaluate the method. A constant linear airflow of 10 cm s–1 over the fibres was applied to increase the extraction rate. For extraction of triethyl phosphate with a 100-m PDMS fibre, equilibrium was achieved after 8 h. The limit of detection was determined to be less than 10 pg m–3. The PDMS–air partition coefficients, Kfs, for the individual organophosphate triesters were determined to be in the range 5–60×106 at room temperature (22–23°C). Air measurements were performed utilising the determined coefficients for quantification. In samples taken from a lecture room four different airborne organophosphate esters were identified, the most abundant of which was tris(chloropropyl) phosphate, at the comparatively high level of 1.1 g m–3. The results from SPME and active sampling had comparable repeatability (RSD less than 17%), and the determined concentrations were also similar. The results suggest that the investigated compounds were almost entirely associated with the gaseous phase at the time and place sampled.  相似文献   
7.
Isetun S  Nilsson U 《The Analyst》2005,130(1):94-98
A simple setup for dynamic air sampling using a solid-phase microextraction (SPME) device designed for use in the field was evaluated for organophosphate triester vapour under both equilibrium and non-equilibrium conditions. The effects of varying the applied airflows in the sampling device were evaluated in order to optimise the system with respect to the Reynolds number and magnitude of the boundary layer that developed near the surface. Further, the storage stability of the analytes was studied for both capped and uncapped 100-microm PDMS fibres. Organophosphate triesters are utilized on large scales as flame-retardants and/or plasticizers, for instance in upholstered furniture. In indoor working environments these compounds have become common components in the surrounding air. Measurements were performed in a recently furnished working environment and the concentration of tris(2-choropropyl) phosphate was found to be 7 microg m(-3).  相似文献   
8.
There is some evidence in the literature of the photocyclization reaction of Tagitinin C ( 1 ) to Tagitinin F ( 2 ). Compound 2 has high pharmacological potential, but it is not easy to obtain, while compound 1 is easily obtained from a widespread plant, Tithonia diversifolia. Among different reaction conditions monitored, one was found that allowed the cyclization of 1 into 2 in <15 min in a photo-dependent reaction. Scaling-up the photocyclization of the pure compound 1 into 2 demonstrated 100% yield, and the isolation of 2 from a UV-irradiated extract was eight-fold higher than the quantity isolated from the non-UV-irradiated extract. We were also able to better understand the process of photoconversion and determine methods to isolate and quantify these compounds, which are known for their important antitumoral activities among other important pharmacological properties.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号