首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   1篇
化学   28篇
晶体学   1篇
数学   6篇
物理学   7篇
  2022年   2篇
  2021年   4篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2016年   2篇
  2014年   1篇
  2012年   2篇
  2011年   5篇
  2010年   4篇
  2009年   4篇
  2008年   3篇
  2007年   3篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2000年   1篇
  1970年   1篇
排序方式: 共有42条查询结果,搜索用时 93 毫秒
1.
The new complexes [RuIIIbpyL2](PF6) and [RuIIIbpyLCl2] [bpy = 2,2-bipyridine; HL = acetylacetone, trifluoroacetylacetone, benzoylacetone (Hbac), tropolone or maltol; HL = Hbac or dibenzoylmethane) have been prepared and characterized by spectroscopy. Their redox behaviour was studied by cyclic voltammetry. They effectively catalyze the oxidation of alcohols, alkanes and primary aromatic amines.  相似文献   
2.
The first synthesis of the two enantiomers of phytoprostane F1 methyl ester 1 and 2 is described using the syn-anti-syn alcoxy ester 3 as starting material.  相似文献   
3.
Contamination with arsenic is a recurring problem in both industrialized and developing countries. Drinking water supplies for large populations can have concentrations much higher than the permissible levels (for most European countries and the United States, 10 μg As per L; elsewhere, 50 μg As per L). Arsenic analysis requires high-end instruments, which are largely unavailable in developing countries. Bioassays based on genetically engineered bacteria have been proposed as suitable alternatives but such tests would profit from better standardization and direct incorporation into sensing devices. The goal of this work was to develop and test microfluidic devices in which bacterial bioreporters could be embedded, exposed and reporter signals detected, as a further step towards a complete miniaturized bacterial biosensor. The signal element in the biosensor is a nonpathogenic laboratory strain of Escherichia coli, which produces a variant of the green fluorescent protein after contact to arsenite and arsenate. E. coli bioreporter cells were encapsulated in agarose beads and incorporated into a microfluidic device where they were captured in 500 × 500 μm(2) cages and exposed to aqueous samples containing arsenic. Cell-beads frozen at -20 °C in the microfluidic chip retained inducibility for up to a month and arsenic samples with 10 or 50 μg L(-1) could be reproducibly discriminated from the blank. In the 0-50 μg L(-1) range and with an exposure time of 200 minutes, the rate of signal increase was linearly proportional to the arsenic concentration. The time needed to reliably and reproducibly detect a concentration of 50 μg L(-1) was 75-120 minutes, and 120-180 minutes for a concentration of 10 μg L(-1).  相似文献   
4.
Syntheses of the enantiomerically pure phytoprostanes B(1) type I and II are described starting from furfural and n-propylfuran. Key steps include the preparation of the Freimanis (+/-)-hydroxycyclopentenone and Wittig coupling using chiral phosphonium salts.  相似文献   
5.
The interaction of the interesting polynitrogen cyclic base 1,4,7-trimethyl-1,4,7-triazacyclononane (TMTACN) with the sigma-acceptor iodine and pi-acceptors tetracyanoethylene (TCNE), 7,7,8,8-tetracyanoquinodimethane (TCNQ) and tetrachloro-p-benzoquinone (chloranil) have been studied spectrophotometrically and cyclic voltametrically in chloroform at 20 degrees C. Based on the obtained data, the formed charge-transfer complexes were formulated as [(TMTACN)I](+).I(3)(-), [(TMTACN)(TCNE)(5)], [(TMTACN)(TCNQ)(3)] and [(TMTACN)(chloranil)(3)] where the stoichiometry of the reactions, donor:acceptor molar ratios, were shown to equal 1:2 for iodine complex, 1:3 for chloranil and TCNQ complexes and 1:5 for TCNE complex.  相似文献   
6.
Summary: This contribution will focus on the elaboration and characterizations of new materials with optimal properties as interpolymer complexes, upon mixing poly (styrene-co-acrylic acid containing 18, 27 and 32 mol % of acrylic acid (SAA-x) and poly (N,N-dimethylacrylamide) (PDMA), through the control of the densities, strength, self-association and accessibility of the interacting species. These elaborated interpolymer complexes, of different structures, investigated by DSC and TGA, exhibited a significant improved thermal stability. Their DSC analysis showed that all these materials showed one composition-dependence glass transition temperature Tg, indicating the formation of a single homogeneous phase. The different behaviors of Tg-initial composition observed with these systems were analyzed by the approaches of Kwei and Brostow et al., recently developed. The specific interactions that occurred within the elaborated materials were evidenced qualitatively by ATR/FTIR spectroscopy, from the appearance of new bands in the 1800–1550 cm−1 region.  相似文献   
7.
The H4PMo11VO40 heteropolyacid (HPA) was supported at 30 wt.% by the dry impregnation method on HMS, CMI-1 and SBA-15 mesoporous materials. The state of the HPA and those of the supports were examined by nitrogen physisorption, X-ray diffraction, (DR) FT–IR and X-ray photoelectron spectroscopies, thermal analysis (TG–ATD) and scanning electron microscopy (SEM). The effect of support on the catalytic behavior of H4PMo11VO40 was studied in the propene oxidation at 350 °C. It was shown that the presence of H4PMo11VO40, modifies the textural properties of mesoporous materials (decrease of surface area) without destroying their structure. The interaction support–heteropolyacid leads to the formation of (SiOH2+)(H3PMo11VO40?) surface species more stable than H4PMo11VO40 species and that appear to be the active sites in the propene oxidation.  相似文献   
8.
Molecular Diversity - Transmembrane protease serine-2 (TMPRSS2) is a cell-surface protein expressed by epithelial cells of specific tissues including those in the aerodigestive tract. It helps the...  相似文献   
9.
We construct two d-dimensional independent diffusions Xta=a+∫0tu(Xsa,s)ds+νBta,Xtb=b+∫0tu(Xsb,s)ds+νBtb, with the same viscosity ν≠0 and the same drift u(x,t)=(ta(x)v1+(1?p)ρtb(x)v2)/(ta(x)+(1?p)ρtb(x)), where ρta,ρtb are respectively the density of Xta and Xtb. Here a,b,v1,v2Rd and p∈(0,1) are given. We show that t(x)=pρta(x)+(1?p)ρtb(x),u(x,t):t?0,x∈Rd) is the unique weak solution of the following pressureless gas system
S(d,ν)?t(ρ)+j=1d?xj(ujρ)=ν22Δ(ρ),?t(uiρ)+j=1d?xj(uiujρ)=ν22Δ(uiρ),?1?i?d,
such that ρt(x)dx→pδa+(1?p)δb,u(x,t)ρt(x)dx→pv1δa+(1?p)v2δb as t→0+. To cite this article: A. Dermoune, S. Filali, C. R. Acad. Sci. Paris, Ser. I 337 (2003).  相似文献   
10.
In a first step of this contribution, the observed glass transition temperature‐composition behavior of miscible blends of poly(styrene‐coN,N‐dimethylacrylamide) (SAD17) containing 17 mol % of N,N‐dimethylacrylamide and poly(styrene‐co‐acrylic acid) (SAA18, SAA27, and SAA32) containing increasing acrylic acid content, are analyzed according to theoretical approaches. Both Kwei and Brostow equations describe well the experimental data though better fits were obtained with the Brostow's approach. The specific interactions involved in these systems are a combination of intra and interassociation hydrogen bonding. The positive deviation from the linear mixing rule of Tg‐composition observed within the SAA18+SAD17 blend system, indicates that interassociation interactions are prevailing. More pronounced intra‐association interactions within the SAA32+SAD17 blend system led to a large negative deviation while a fine balance is established between these two types of interactions within the SAA27+SAD17 blend. A thermodynamic analysis was carried out according to the Painter‐Coleman association model. The miscibility and phase behavior of SAD17+SAA18 and SAD17+SAA27 blends are well predicted. However, this model predicts a partial miscibility of SAD17+SAA32 system. Finally, the fitting parameter free method developed by Coleman to predict the Tg‐composition behavior is applied. This method predicts fairly well the evolution trend of experimental Tgs of the SAA18+SAD17 and SAA27+SAD17 blend systems. However, the compositional dependence of SAA32+SAD17 blend Tg was not predictable by this method. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47:2074–2082, 2009  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号