首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   381篇
  免费   9篇
化学   324篇
晶体学   1篇
力学   9篇
数学   14篇
物理学   42篇
  2023年   1篇
  2021年   7篇
  2020年   2篇
  2019年   10篇
  2018年   4篇
  2017年   6篇
  2016年   7篇
  2015年   6篇
  2014年   7篇
  2013年   16篇
  2012年   26篇
  2011年   37篇
  2010年   22篇
  2009年   14篇
  2008年   25篇
  2007年   28篇
  2006年   26篇
  2005年   30篇
  2004年   29篇
  2003年   19篇
  2002年   34篇
  2001年   2篇
  2000年   6篇
  1999年   2篇
  1998年   5篇
  1997年   2篇
  1996年   3篇
  1992年   2篇
  1990年   3篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   4篇
  1981年   2篇
排序方式: 共有390条查询结果,搜索用时 15 毫秒
1.
A large class of stereochemcial and related interactions in organic chemistry are repulsive and others are attractive, but the relative orientation of two methyl groups and the amount of energy required to twist one relative to the other (the hindered rotation energy barriers), or the alignment of such a group with respect to a conjugated ring to which it is attached (widely attributed to a mechanism called “hyperconjugation”) are estimated to be small in compared with the total energy of the molecule. We used theories of both isotropic and anisotropic proton hyperfine interactions in the π‐electron systems developed in the early sixties. They are approximated by the magnetic dipole nteractions between each proton and an electron spin magnetization that is distributed in 2s and 2p Slater atomic orbitals center on carbon atoms. We have extended these theories to the non‐planar olefinic cation radicals, which are very important in biochemistry as well as in petroleum catalysis. A three dimensional electron spin density equation has been developed in this paper to handle some Jahn‐Teller vibronic molecules. The new electron spin density equation related the observed proton hyperfine splittings to the non‐planar structures of the open‐chain alkene cation radicals generated by radiolysis and various chemical oxidation methods. The spin densities and the conformational calculations based on valence bond theory and symmetry principles are compared with some more elaborated molecular orbital calculations in the literature. The localized valence bond approaches are better in accord with our experimental results. The anomalous line‐width effect of the four methyl groups observed in the 2,3‐dimethyl‐2‐butene cation radicals also confirmed the positive sign of the electron‐proton hyperfine constant of hyper‐conjugation mechanism. A methyl substituent attached to a conjugated molecule often behaves as if it formed part of the region of conjugation; the charge appears to flow from the methyl group into the π electron system and it may also give rise to an appreciable dipole moment. Methylation also gives rise to an appreciable dipole moment, and the resultant red shift of electronic absorption bands is of some importance in the design of dye molecules.  相似文献   
2.

Background  

The adenine nucleotide translocator 1 (Ant1) is an inner mitochondrial membrane protein involved with energy mobilization during oxidative phosphorylation. We recently showed that rodent Ant1 is upregulated by transforming growth factor-beta (TGF-β) in reactive astrocytes following CNS injury. In the present study, we describe the molecular mechanisms by which TGF-β1 regulates Ant1 gene expression in cultured primary rodent astrocytes.  相似文献   
3.
4.
Riboflavin (I) is reduced in separable steps by indium(I), vanadium(II), europium(II), and titanium(III) in 0.02-1.0 M H+, yielding first the radical ion, II (lambdamax = 495 nm), and then the dihydro compound, III. The initial reduction with InI yields 2 equiv of the radical, but kinetic profiles exhibit no irregularity due to intervention of In(II), indicating that participation by the dipositive state is much more rapid than the In(I) reaction. Predominant paths involve the protonated form of the flavin, RbH+, and that of the radical, RbH2.+. Formation of the radical with excess V(II) and Ti(III) (but not with In(I)) is strongly autocatalytic, reflecting rapid comproportionation involving the flavin and the dihydro compound. The V(II) and Ti(III) rates for both steps greatly exceed the substitution-controlled limits for these states and therefore pertain to outer-sphere processes. The very high ratio kEu/kv for the first step, however, points to an inner-sphere reduction by the lanthanide cation. A kinetic inversion is observed for In(I) (kRbH.+ > kRbH2.+), implying a bridged reduction path for the initial step with this center as well.  相似文献   
5.
One of the limiting factors restricting the effective and efficient bioconversion of softwood-derived lignocellulosic residues is the recalcitrance of the substrate following pretreatment. Consequently, the ensuing enzymatic process requires relatively high enzyme loadings to produce monomeric carbohydrates that are readily fermentable by ethanologenic microorganisms. In an attempt to circumvent the need for larger enzyme loadings, a simultaneous physical and enzymatic hydrolysis treatment was evaluated. A ball-mill reactor was used as the digestion vessel, and the extent and rate of hydrolysis were monitored. Concurrently, enzyme adsorption profiles and the rate of conversion during the course of hydrolysis were monitored. α-Cellulose, employed as a model substrate, and SO2-impregnated steam-exploded Douglas-fir wood chips were assessed as the cellulosic substrates. The softwood-derived substrate was further posttreated with water and hot alkaline hydrogen peroxide to remove >90% of the original lignin. Experiments at different reaction conditions were evaluated, including substrate concentration, enzyme loading, reaction volumes, and number of ball beads employed during mechanical milling. It was apparent that the best conditions for the enzymatic hydrolysis of α-cellulose were attained using a higher number of beads, while the presence of air-liquid interface did not seem to affect the rate of saccharification. Similarly, when employing the lignocellulosic substrate, up to 100% hydrolysis could be achieved with a minimum enzyme loading (10 filter paper units/g of cellulose), at lower substrate concentrations and with a greater number of reaction beads during milling. It was apparent that the combined strategy of simultaneous ball milling and enzymatic hydrolysis could improve the rate of saccharification and/or reduce the enzyme loading required to attain total hydrolysis of the carbohydrate moieties.  相似文献   
6.
A several novel 1,3,4‐oxadiazinan‐2‐thiones have been synthesized by the cyclization of β‐hydrazino‐alcohols with either carbon disulfide or 1,1′‐thiocarbonyldiimidazole (TCDI).  相似文献   
7.
The assembly of thioacetyl-terminated oligo(phenylene ethynylene)s (OPEs) on Au and Pt surfaces under an electric potential (electrochemical assembly, EA) was compared to assembly at an open circuit (conventional self-assembly, CSA). Cyclic voltammetry and ellipsometry were used to characterize the adsorption kinetics of self-assembled monolayers formed by these two techniques. The adsorption rate of the EA was remarkably faster at positive potentials but slower at negative potentials than that of the CSA, The EA at 400 mV proceeded about 800 times faster than the CSA when exposed to the same solution concentrations. The adsorption rates of both EA and CSA were found to be dependent on the molecular structures of OPEs. OPEs containing electron-donating groups assemble faster than those with electron-withdrawing groups. The amount of time that the thioacetyl-terminated OPE is in the presence of the base, for removal of the acetyl group to generate the thiolate, is called the deprotection time. Deprotection times play a critical role in achieving the maximum difference in adsorption rates between the EA and the CSA. The assembly must be initiated no later than 5 min after the basic deprotection is commenced so that the thiolate concentration remains low. The difference in the adsorption rates between EA and CSA might enable selective deposition of certain OPEs onto specific electrodes.  相似文献   
8.
Vapor to liquid multicomponent nucleation is a dynamical process governed by a delicate interplay between condensation and evaporation. Since the population of the vapor phase is dominated by monomers at reasonable supersaturations, the formation of clusters is governed by monomer association and dissociation reactions. Although there is no intrinsic barrier in the interaction potential along the minimum energy path for the association process, the formation of a cluster is impeded by a free energy barrier. Dynamical nucleation theory provides a framework in which equilibrium evaporation rate constants can be calculated and the corresponding condensation rate constants determined from detailed balance. The nucleation rate can then be obtained by solving the kinetic equations. The rate constants governing the multistep kinetics of multicomponent nucleation including sensitivity analysis and the potential influence of contaminants will be presented and discussed.  相似文献   
9.
[reaction: see text] Asymmetric aldol addition reactions have been conducted with (1R,2S)-ephedrine-derived 3,4,5,6-tetrahydro-2H-1,3,4-oxadiazin-2-one (2). Diastereoselectivities range from 75:25 to 99:1 for the formation of the crude non-Evans syn adducts 8a-h. The facial selectivity of the enolate is directed by the stereogenic N(4)-methyl substituent. Aldol adduct 8a is readily cleaved by acid hydrolysis to afford (2S,3S)-3-hydroxy-2-methyl-3-phenylpropionic acid (9) in >95% ee.  相似文献   
10.
In this paper, we disclose an efficient one-pot procedure for the preparation of substituted 1,8-naphthyridin-4-one analogues. Previous efforts to effect this type of transformation were complicated by the formation of benzene tricarboxylate. Via the use of excess base, the impurity formation was completely inhibited. This allowed for the clean preparation of the desired intermediate and subsequent formation of naphthyridone analogues in a single flask, which could then be crystallized directly from the reaction mixture in good yield and high purity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号