首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   3篇
化学   53篇
晶体学   21篇
力学   4篇
数学   4篇
物理学   3篇
  2022年   1篇
  2021年   2篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   4篇
  2015年   3篇
  2014年   3篇
  2013年   3篇
  2012年   1篇
  2011年   6篇
  2010年   4篇
  2009年   7篇
  2008年   7篇
  2007年   1篇
  2006年   1篇
  2005年   8篇
  2004年   8篇
  2003年   3篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1996年   3篇
  1994年   1篇
  1990年   1篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1966年   1篇
排序方式: 共有85条查询结果,搜索用时 109 毫秒
1.
Treatment of Mn(2)(CO)(10) with 3,4-toluenedithiol and 1,2-ethanedithiol in the presence of Me(3)NO.2H(2)O in CH(2)Cl(2) at room temperature afforded the dinuclear complexes Mn(2)(CO)(6)(mu-eta(4)-SC(6)H(3)(CH(3))S-SC(6)H(3)(CH(3))S) (1), and Mn(2)(CO)(6)(mu-eta(4)-SCH(2)CH(2)S-SCH(2)CH(2)S) (2), respectively. Similar reactions of Re(2)(CO)(10) with 3,4-toluenedithiol, 1,2-benzenedithiol, and 1,2-ethanedithiol yielded the dirhenium complexes Re(2)(CO)(6)(mu-eta(4)-SC(6)H(3)(CH(3))S-SC(6)H(3)(CH(3))S) (3), Re(2)(CO)(6)(mu-eta(4)-SC(6)H(4)S-SC(6)H(4)S) (4), and Re(2)(CO)(6)(SCH(2)CH(2)S-SCH(2)CH(2)S) (5), respectively. In contrast, treatment of Mn(2)(CO)(10) with 1,3-propanedithiol afforded the trimanganese compound Mn(3)(CO)(6)(mu-eta(2)-SCH(2)CH(2)CH(2)S)(3) (6), whereas Re(2)(CO)(10) gave only intractable materials. The molecular structures of 1, 3, and 6 have been determined by single-crystal X-ray diffraction studies. The dimanganese and dirhenium carbonyl compounds 1-5contain a binucleating disulfide ligand, formed by interligand disulfide bond formation between two dithiolate ligands identical in structure to that of the previously reported dimanganese complex Mn(2)(CO)(6)(mu-eta(4)-SC(6)H(4)S-SC(6)H(4)S). Complex 6, on the other hand, forms a unique example of a mixed-valence trimangenese carbonyl compound containing three bridging 1,3-propanedithiolate ligands. The solution properties of 6 have been investigated by UV-vis and EPR spectroscopies as well as electrochemical techniques.  相似文献   
2.
When analytes containing cationic components, such as proteins, are separated in fused silica capillaries or micro-chips, they adsorb strongly to the negatively charged channel walls. Broadened and highly asymmetric peaks in the detector signal is symptomatic of the presence of such wall interactions. Band broadening is caused by the introduction of shear into the electroosmotic flow which leads to Taylor dispersion. The shearing flow in turn is caused by axial variations in zeta-potential due to adsorbed analytes. In this paper, numerical solutions of the coupled electro-hydrodynamic equations for fluid flow and the advection-diffusion equation for analyte concentration are presented in the limit of thin Debye layers. The simulations reproduce many of the qualitative effects of wall adsorption familiar from observation. Further, the simulation results are compared, and found to agree very well (to within a percent for characteristic values of the parameters) with a recently developed asymptotic theory.  相似文献   
3.
Treatment of Ru3(CO)12 with dpphSe2 (dpph = 1,6-bis(diphenylphosphino)hexane) in refluxing toluene in the presence of Me3NO afforded two new compounds, Ru3(CO)7(-CO)(3-Se)(-dpph) (1) and Ru3(CO)7(3-Se)2(-dpph) (2). A similar reaction of Ru3(CO)12 with dpppeSe2 (dpppe = 1,5-bis(diphenylphosphino)pentane) gave exclusively Ru3(CO)7(3-Se)2(-dpppe) (3). Treatment of Ru3(CO)12 with dpphS2 and dpppeS2 at 110°C in the presence of Me3NO afforded Ru3(CO)7(3-S)2(-dpph) (4) and Ru3(CO)7(3-S)2(-dpppe) (5), respectively. Reactions of Fe3(CO)12 with dpphSe2 and dpppeSe2, under identical conditions, afforded Fe3(CO)7(3-Se)2(-dpph) (6) and Fe3(CO)7(3-Se)2(-dpppe) (7), respectively. Compounds 1–7 were characterized spectroscopically and the molecular structures of compounds 1–4 were determined by single crystal X-ray crystallography. The core of 1 contains an equilateral triangle of ruthenium atoms with one capping selenium, one bridging dpph, one doubly bridging carbonyl and seven terminal carbonyl ligands. Complexes 2–4 have a square-pyramidal structure with two metal and two chalcogenide atoms alternating in the basal plane and the third metal atom at the apex of the pyramid, and belong to the family of well-known nido clusters with seven skeletal electron pairs.  相似文献   
4.
Four triosmium carbonyl clusters bearing terminal pyrazines, bridging hydroxy and methoxycarbonyl ligands of general formula [Os3(CO)9(μ-OH)(μ-OMeCO)L] (1, L = pyrazine; 2, L = 2-methylpyrazine; 3, L = 2,3-dimethylpyrazine; 4, L = 2,3,5-trimethylpyrazine) were synthesized by the reactions of [Os3(CO)12] with the corresponding pyrazine derivatives and water in the presence of a methanolic solution of Me3NO in moderate yields. Compounds [Os3(CO)9(μ-OH)(μ-OMeCO)L] react with a series of two electron donor ligands, L′ at ambient temperature to give [Os3(CO)9(μ-OH)(μ-OMeCO)L′] (5, L′ = PPh3; 6, L′ = P(OMe)3; 7, L′ = tBuNC; 8, L′ = C5H5N) in good yields by the displacement of the pyrazine ligands. This implies that the pyrazine ligands in 1–4 are relatively labile. Compounds 2, 3, 4, and 8 were characterized by single crystal X-ray diffraction analyses. All the four compounds possess two metal–metal bonds and a non-bonded separation of two osmium atoms defined by Os(1)Os(3), which are simultaneously bridged by OH and MeOCO ligands and a heterocyclic ligand is terminally coordinated to one of the two non-bonded osmium atoms.  相似文献   
5.
The reaction of [Os3(CO)12] with tetramethylthiourea in the presence of a methanolic solution of Me3NO·2H2O at 60° yields the compounds [Os3(CO)11{η 1-SC(NMe2)2}] (1) in 56% yield and [Os3(CO)9(μ-OH)(μ-MeOCO){η 1-SC(NMe2)2}] (2) in 10% yield in which the tetramethylthiourea ligand is coordinatedvia the sulfur atom at an equatorial position. Compound2 is a 50 e? cluster with two metal-metal bonds and the hydroxy and methoxycarbonyl ligands bridging the open metal-metal edge. In contrast, the analogous reaction of [Os3(CO)12] with thiourea gives the compounts [(μ-H)Os3(CO)10{μ-NHC(S)NH2}] (3) in 8% yield and [(μ-H)Os3(CO)9{3-NHC(S)NH2}] (4) in 30% yield. In3, the thioureato ligand bridges two osmium atomsvia the sulfur atom, whereas in4 in addition to the sulfur bridge, one of the nitrogen atoms of thioureato moiety bonds to the remaining osmium atom. The decacarbonyl compounds 3 can also be obtained in 50% yield from the reaction of [Os3(CO)10(MeCN)2] with thiourea at ambient temperature. Compound3 converts to4 (65%) photochemically. Compound1 reacts with PPh3 and acetonitrile at ambient temperature to give the simple substitution products [Os3(CO)11(PPh3)] and [Os3(CO)11(MeCN)], respectively, while with pyridine, the oxidative addition product [(μ-H)Os3(CO)10(μ-NC5H4] is formed at 80°C. All the new compounds are characterized by IR,1-H-NMR and elemental analysis together with the X-ray crystal structures of1,2 and4. Compound1 crystallizes in the triclinic space group P $P\bar 1$ with unit cell parametersa = 8.626(3) Å,b = 11.639(3) Å,c = 12.568(3_ Å,α = 84.67(2)°,β = 75.36(2)°,γ = 79.49(3)°,V = 1199(1) Å3, andZ = 2. Least-squares refinement of 4585 reflections gave a final agreement factor ofR = 0.0766 (R w = 0.0823). Compound2 crystallizes in the monoclinic space group P21/n with unit cell parametersa = 9.149(5) Å,b = 17.483(5) Å,c = 15.094(4) Å,β = 91.75(2)°,V = 2413(2) Å3, andZ = 4. Least-squares refinement of 3632 reflections gave a final agreement factor ofR = 0.0603 (R w = 0.0802). Compound4 crystallizes in the monoclinic space group C2/c with unit cell parametersa = 13.915(7) Å,b = 14.718(6) Å,c = 17.109(6) Å,β = 100.44(3)°,V = 3446(5) Å3, andZ = 8. Least-squares refinement of 2910 reflections gave a final agreement factor ofR = 0.0763 (R w = 0.0863).  相似文献   
6.

Reactions of unsaturated [HOs3(CO)83-Ph2PCH(R)P(Ph)C6H4}] (R?=?H, Me) with Bu3SnH are examined. [HOs3(CO)83-Ph2PCH(R)P(Ph)C6H4}] reacts with Bu3SnH at room temperature to afford [H2Os3(CO)8(SnBu3){µ3-Ph2PCH(R)P(Ph)C6H4}] (1) via oxidative addition of the Sn?H bond to the parent cluster. Heating 1 in refluxing toluene leads to the formation of [H2Os3(CO)7(SnBu3){µ3-Ph2PCH(R)P(Ph)C6H4}] (2) through decarbonylation. Cluster 2 exists in two isomeric forms in solution which has been probed by VT NMR spectroscopy. The new Os-Sn bimetallic clusters have been characterized by a combination of analytical and spectroscopic data together with single-crystal X-ray diffraction analysis.

Graphic abstract
  相似文献   
7.
For the first time, we have observed a combined effect of two bases NaOH/Et3N to promote the diazo transfer reaction of β-oximino esters. This unusual synergistic effect has been employed to obtain α-diazo oxime ethers directly from β-keto esters by one-pot process. This method is simple and cost-effective and the reagents are readily available.  相似文献   
8.
This study evaluates the kinetic hydrate inhibition (KHI) performance of four quaternary ammonium hydroxides (QAH) on mixed CH4 + CO2 hydrate systems. The studied QAHs are; tetraethylammonium hydroxide (TEAOH), tetrabutylammonium hydroxide (TBAOH), tetramethylammonium hydroxide (TMAOH), and tetrapropylammonium hydroxide (TPrAOH). The test was performed in a high-pressure hydrate reactor at temperatures of 274.0 K and 277.0 K, and a concentration of 1 wt.% using the isochoric cooling method. The kinetics results suggest that all the QAHs potentially delayed mixed CH4 + CO2 hydrates formation due to their steric hindrance abilities. The presence of QAHs reduced hydrate formation risk than the conventional hydrate inhibitor, PVP, at higher subcooling conditions. The findings indicate that increasing QAHs alkyl chain lengths increase their kinetic hydrate inhibition efficacies due to better surface adsorption abilities. QAHs with longer chain lengths have lesser amounts of solute particles to prevent hydrate formation. The outcomes of this study contribute significantly to current efforts to control gas hydrate formation in offshore petroleum pipelines.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号