首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
化学   8篇
  2023年   2篇
  2017年   1篇
  2014年   1篇
  2009年   1篇
  2007年   3篇
排序方式: 共有8条查询结果,搜索用时 31 毫秒
1
1.
The electrochemical treatment of dyestuff from aqueous solution using an iron cell was achieved with reduction in chemical oxygen demand (COD) and color with high efficiency. Degradation of the azo dye Reactofix Red 3 BFN was carried out under different experimental conditions. Electrolysis completely decolorizes the effluent with substantial reduction in COD value. The rate kinetics during electrolysis was found to be first order. Results show that electrochemical reduction is a superior technology for treatment of dyes, as there is no simultaneous addition of anions, such as sulfate or chloride.  相似文献   
2.
The wheat husk, an agricultural by-product, has been activated and used as an adsorbent for the adsorption of Reactofix Navy Blue 2 GFN from aqueous solution. In this work, adsorption of Reactofix Navy Blue 2 GFN on wheat husk and charcoal has been studied by using batch studies. The equilibrium adsorption level was determined to be a function of the solution pH, adsorbent dosage, dye concentration and contact time. The equilibrium adsorption capacities of wheat husk and charcoal for dye removal were obtained using Freundlich and Langmuir isotherms. Thermodynamic parameters such as the free energies, enthalpies and entropies of adsorption were also evaluated. Adsorption process is considered suitable for removing color, COD from waste water.  相似文献   
3.
We demonstrate a simple one‐step method for synthesizing noble metal nanoparticle embedded free standing polydimethylsiloxane (PDMS) composite films. The process involves preparing a homogenous mixture of metal salt (silver, gold and platinum), silicone elastomer and the curing agent (hardener) followed by curing. During the curing process, the hardener crosslinks the elastomer and simultaneously reduces the metal salt to form nanoparticles. This in situ method avoids the use of any external reducing agent/stabilizing agent and leads to a uniform distribution of nanoparticles in the PDMS matrix. The films were characterized using UV‐Vis spectroscopy, transmission electron microscopy and X‐ray photoemission spectroscopy. The nanoparticle‐PDMS films have a higher Young's modulus than pure PDMS films and also show enhanced antibacterial properties. The metal nanoparticle‐PDMS films could be used for a number of applications such as for catalysis, optical and biomedical devices and gas separation membranes.

  相似文献   

4.
1,4-Dioxane, a contaminant increasingly detected in water supplies, is a public health concern because it is classified as a possible human carcinogen. 1,4-Dioxane can be biodegraded by aerobic bacteria via monooxygenase-catalyzed reactions. While these metalloenzymes require trace metals as cofactors in their catalytic sites, these metals may be toxic at elevated concentrations. In this study, the effects of transition metals on 1,4-dioxane biodegradation by Pseudonocardia dioxanivorans CB1190, a monooxygenase-expressing bacterium, were investigated. Dose-dependent inhibition of 1,4-dioxane biodegradation by Cd(II), Cu(II), and Ni(II) was observed, whereas Zn(II) had no measurable effect on biodegradation rates. 1,4-Dioxane biodegradation in cultures exposed to 2 mg/L Cu(II) was restored in the presence of 0.005, 0.05, and 0.5 mM alginin, 0.05, and 0.5 mM cysteine, and 0.005 mM tannin. These results indicated that specific ligands bind with transition metals and alleviate bacterial toxicity. In parallel experiments, tannin and cysteine inhibited 1,4-dioxane biodegradation, but alginin, BSA, and SRNOM did not affect the biodegradation rates. Thus, monooxygenase-catalyzed biodegradation rates are subject to interactions among transition metals and natural organic ligands in the environment. Mechanistic insights and quantitative data obtained in this study will be useful for designing bioremediation strategies at sites simultaneously contaminated with metals and organic pollutants.  相似文献   
5.
A novel fluorescent chemosensor, (E)-7-(diethylamino)-3-((2-phenylimidazo[1,2-a]pyridin-3-ylimino)methyl)-2H-chromen-2-one 1a, has been synthesised and characterised. This chemosensor displayed an extreme selective fluorescence emission only with Cu2+ ion over all other metal ions examined. The Job’s plot experiment analysis suggested the binding ratio of the chemosensor 1a with Cu2+ was 1:1 metal-to-ligand ratio. The association constant for Cu2+ towards receptor 1a obtained from Benesi–Hildebrand plot was found to be 4.859 × 103 M?1 with a detection limit 4.6 × 10?8 M. Fluorescence enhancement caused by Cu2+ binding with chemosensor 1a attributed to combinational effect of intramolecular charge transfer and chelation-enhanced fluorescence occurred at pH 8.0.  相似文献   
6.
Electrochemical methods for pollution abatement have been shown to be viable alternatives or complementary to biological treatment in some instances, especially when pollutants are recalcitrant to biological processing. Electrochemical oxidation and reduction have been found successful in decomposing the most resilient compounds, and electrolysis is assigned an important role in the elucidation of the electrode process. Small well-defined cathodic and anodic peak were observed that on controlled-potential electrolysis (CPE) reduced substantially with a considerable decrease in color and absorbance. The rate of decrease of the current and absorbance was found to exhibit a first-order dependence. The COD of the solutions showed a decrease from 1416 to 352 mg/L. No peak could be observed in the voltammograms after CPE, indicating the absence of any electroactive substance left in the solutions. Results show that electrochemical reduction is a superior technology for treatment of dyes, as there is no simultaneous addition of anions, such as sulfate or chloride.  相似文献   
7.
In the last few decades, there has been enormous growth in ferrite nanoparticles. Magnetic, optical, and electrical properties of ferrites gain consideration due to their use in various applications such as rechargeable lithium batteries, medical diagnostics, solar energy devices, and so forth. A vast increase in interest in ferrite nanoparticles has led them to be used as catalysts in various applications as they possess a large surface area-to-volume ratio. Furthermore, iron-based magnetic characteristics make it simple to retrieve catalysts by using an external magnet. Iron's catalytic potential, however, is far less than copper's. Therefore, the catalytic scope is substantially increased by substituting copper within the crystal lattice. Recently copper ferrite nanoparticles have caught the interest of numerous researchers due to low-cost magnetic material, stability under diverse conditions, and ease at which catalyst can be retrieved using an external magnetic field and utilized repeatedly. This review of data from year 2010 through 2022 emphasizes the synthesis method, structure, application in dyes degradation, catalytic potential in the number of coupling reactions, recyclability, and reusability of the magnetic catalyst.  相似文献   
8.
In recent years, magnetic nanoparticles and nanocomposites play an important role as a nanocatalyst in the creation of a wide range of bioactive heterocycles with extraordinarily high activity and selectivity, low energy consumption, and extended life. Among all heterocycles, many natural products, pharmaceuticals, and bioactive compounds contain pyran scaffolds which have a wide range of uses in biomedical research, industry, and medicine. Additionally, these are also widely used in the synthesis of novel heterocyclic systems as precursors. This study focused on recent advances in the last 5 years in using various magnetic recoverable and recycled nanoparticles and nanocomposites to synthesize pyran derivatives and their pharmacological activity. This article has been classified into three subsections: (i) MNPs-metal nanocomposite catalyzed reactions, (ii) MNPs-organic based nanocomposite catalyzed reactions, and (iii) MNPs-ionic liquid nanocomposite catalyzed reactions and (iv) MNPs-acid based nanocomposite to describe catalytic efficiency of magnetic nanocomposites for the synthesis of pyran derivatives. A comparative study of nanocomposites and different approaches for green synthesis of pyrans by highlighting the advantages and disadvantages along with catalyst recovery and recyclability has been mentioned, which will help scientists to probe and stimulate the study of these scaffolds.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号